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Introduction

The Danish national elevation model, DK-DEM, was
introduced in 2009 and is based on LiDAR data col-
lected in the time frame 2005–2007. Hence, DK-DEM is
aging, and it is time to consider how to integrate new
data with the current model in a way that improves
the representation of new landscape features, while still
preserving the overall (very high) quality of the model.

To estimate the magnitude of potential improvements,
and to devise efficient and effective ways of integrating
the new and old data, we currently carry out a number
of case studies based on comparisons between the
current terrain model (with a ground sample distance,
GSD, of 1.6 m), and a number of new high resolution
point clouds (10-70 points/m2).

Preliminary results reveal that for very high resolution
data in smooth terrain (which is the common case in
Denmark), using local mean (LM) as grid value estima-
tor is only negligibly worse than using the theoretically
“best” estimator, i.e. ordinary kriging (OK) with rig-
orous modelling of the semivariogram. The bias in a
leave one out cross validation differs on the micrometer
level, while the RMSE differs on the 0.1 mm level (see
below).

This is fortunate, since a LM estimator can be imple-
mented in plain stream mode, letting the points from
the unstructured point cloud (i.e. no TIN generation)
stream through the processor, individually contributing
to the nearest grid posts in a memory mapped grid
file.

Algorithmically this is very efficient, but it would be
even more efficient if we did not have to handle so
much data.

Another of our recent case studies focuses on this.
The basic idea is to ignore data that does not tell us
anything new. We do this by looking at anomalies
between the current height model and the new point
cloud, then computing a correction grid for the current
model. Points with insignificant anomalies are simply
removed from the point cloud, and the correction grid
is computed using the remaining point anomalies only.

Hence, we only compute updates in areas of significant
change, speeding up the process, and giving us new
insight of the precision of the current model which in
turn results in improved metadata for both the current
and the new model.

Location and test sites

The full areal coverage of the test survey between
Næstved and Fensmark in eastern Denmark. Heights
range from 3 m (blue) to 35 m (red). Test sites are se-
lected from a partial block starting roughly one quarter
into survey, measured from its westmost point.

Test sites: site A is shown in red, site B in green, site C
in blue, and site D in magenta. Axis values are UTM
zone 32 coordinates.



Scan characteristics

The test data set is collected using a helicopter mounted
instrument, which results in a characteristic sampling
pattern.

This example shows the south-eastern most 10 m by
10 m of site A which contains 1369 observations.

Some striping due to flight lines is visible.

Data Characteristics: Variograms

Left: Isotropic (omni-directional) semi-variograms for
sites A (in red), B (in green), C (in blue) and D (in
magenta), the lag separation value is 0.40 m.

For large lag values the four sites are very different, for
shorter lag values they seem much more similar.

Right: Isotropic (omni-directional) semi-variograms for
sites A (in red), B (in green), C (in blue) and D (in
magenta), lag values up to 4.0 m. The average semi-
variogram is shown in black.

The zoom on smaller lag values shows that the four sites
mostly differ in the scale of the semi- variograms. This
scaling does not influence the resulting kriging weights in
the interpolations below.

For lag values up to 2.0 m we fit an isotropic (also
known as omni-directional), linear model to the average
semi-variogram. The resulting intercept is 0.0002529
m2 and the slope is 0.0001600 m.

With the sampling density used here, we will not use
data points beyond 2.0 m in the interpolations below.



Leave one out (LOO) cross validation results for 5 different estimators
Site A: Bias and RMSE for measurements and LOO cross-validated estimates; 0.40 m lag separation distance.
Number of observations is 24 687.

Method Bias [mm] RMSE [mm]
Ordinary Kriging -0.187 18.47
Nearest Neighbour -3.245 24.67
Local Means -0.174 18.43
Inverse Distance Weight -0.819 18.71
Inverse Square Distance Weight -1.395 19.40

A closer look at kriging versus local means

Left: Bias for OK, for sites A (in red), B (in green), C
(in blue) and D (in magenta), as a function of number
of nearest observations used by the estimator.

Right: RMSE for OK, for sites A (in red), B (in green),
C (in blue) and D (in magenta).

We see that for OK the bias in all cases is negative, i.e.,
our interpolated values are systematically too low.

Also, for OK both bias and RMSE seem to stabilize at
optimal values for around 30 nearest observations used
in the interpolation.

This is due to the so-called screening effect in kriging
for semi-variogram models with little nugget effect. (In
all sites RMSE is smallest for 10 neighbours but here
bias is mostly high.)

Left: Bias for LM, for sites A (in red), B (in green), C
(in blue) and D (in magenta).

Right: RMSE for LM, for sites A (in red), B (in green),
C (in blue) and D (in magenta).

As for OK, there is a tendency to negative bias, espe-
cially for a low number of neighbours (not pronounced
for sites B and D). Also for LM 30 nearest observations
seem optimal for these data.



LM interpolated heights, site A. North is up and left.

Hence, runs with different numbers of neighbours used
in the interpolation show that in this data material there
is a tendency, that for a small number of neighbours
used in the interpolation (here five to ten), LM per-
forms at least as good as OK with a anisotropic double
spherical semi-variogram model based on 0.10 m lag
separation.

For a higher number of neighbours (here above 30),
based on RMSE OK performs marginally better than LM,
whereas based on bias, LM performs better. (This is an
example of the well- known bias-variance trade-off.)

Outroduction

Currently we focus on simple approaches for creating a
smooth update process for integration of heterogeneous
data sets.

A basic example is to ignore data that does not tell us
anything new.

In the figure below, we do this by looking at anomalies
between the current height model and the new point
cloud, then computing a correction grid for the current
model. Points with insignificant anomalies are simply
removed from the point cloud, and the correction grid
is computed using the remaining point anomalies only.

Hence, we only compute updates in areas of significant
change, speeding up the process, and giving us new
insight of the precision of the current model which in

turn results in improved metadata for both the current
and the new model.

On the other hand, as years go by and multiple gen-
erations of data become available, more advanced ap-
proaches will probably become necessary (e.g. a multi
campaign bundle adjustment, improving the oldest data
using cross-over adjustment with newer campaigns).

But to prepare for such approaches, it is important al-
ready now to organize and evaluate the ancillary (GPS,
INS) and engineering level data for the current data
sets. This is essential if future generations of DEM
users should be able to benefit from future concep-
tions of “some safe and sensible shortcuts for efficiently
upscaled updates of existing elevation models”.


