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Motivation

e Seek a unified model of space-time statistics of rain at
various averaging scales (L, T)

Experimental need to compare radar and gauge
measurements during ground validation

Need to capture inter-dependence of space/time

averaging scales and fall-off rates of spatiotemporal
correlations

Estimate the sampling error of radar and gauge
measurements

[Kundu & Travis, 2013; submitted to JGR-Atmospheres] "




Basic ldea

e Describe rain in terms of a random field R(x,f) — the
iInstantaneous point rain rate (a mathematical abstraction)
obeying a stochastic dynamical equation.

e Space-time stationary, homogeneous, isotropic statistics

e Derive statistical properties (2" moment statistics) of

spatial averages at an instant r,(f) (radar estimates) and
time averages at a point r{x) (gauge estimates) from a
common parameterized framework.

e Model parameters tuned to radar statistics should describe
gauge statistics




Description of the Model

e Linear stochastic differential equation of fractional order
for the Fourier amplitudes a(k,t) (notation: _ D/ ~(d/dt)?) :

Dfalk,t) = -7 a(k,t) + f(k,1)
7, =7,(1+ kL)

3/2

Fo(k - k')5(r)

(f (k) f* (k1) = (27)

f(k,f) = white noise random force of amplitude F.

e Model parameters: strength parameter F,, characteristic
length L,, characteristic time z,, spectral indices fand «a

e Relaxation time of the Fourier mode k: 7, ~ k¢ (k — x)
(short wavelength), ¢, ~ 7, (k — 0) (long wavelength)

e =1 case: Langevin Equation (‘Brownian Motion’).  rgmem




Definition of Fractional Order Derivative

e The fractional order time derivative D/ is defined as the
a — —oo limit of an integral kernel

called the Riemann-Liouville derivative operator.
e The limit called the Liouville-Weyl operator has the

Important property .
_.D! f(1) + (<iw)" F(o)

under Fourier transform.




Description of the Model (cont: )

Power spectrum of the model

S(k,w) = F0[|a)|2/3 +2 cos(Br /2)|w|" 7, + r,;zﬁ]_l

-- Fourier transform of space-time covariance c(p, 1)
The spatial covariance at zero lag has the Matérn form

C(p,O) = Vo(p/ZLo)va(p/Lo)’
a(28-1) =2(1+v).

Two distinct cases: (i) v> 0 : point variance ¢(0,0) is
finite; (ii) v< 0 : ¢(0,0) is divergent, c(p, 0) ~ p~2.
Radar data strongly indicates v < 0.
(B =1 case: Bell and Kundu J. Climate 1996, Kundu and Bell WRR 2003) (@O




Space-time Statistics of Radar Data

Lagged covariance of rain rate area-averaged over two
L x L squares A and A’spatially separated by distance s
and time 7 :

L, (s.7)= (1/A2)f d*x fdzx’ c(s+x - x,7)
A A’

Variance for a box A: 0,2 =T,,(0,0)= A+ BL2"as L — 0.
Spatial correlation at zero lag: @ ,,(s,0) =T, ,{s,0)/0,?
Lagged autocorrelation for a box A: @ ,,(0,7) =T, ,(0,7)/0,?




Model Fit to Radar Data

» TRMM GV Data (2A53) :
MELB radar (Melbourne FL) . =014, L. =35k
KWAJ radar (Kwajalein Atoll,
Rep. Marshall Islands,
Pacific Ocean)
» Radar data gridded
into 151 x 151 array
of 2 x 2 km pixels.
» Results from
JJA 2001 season
» Model parameters -

Yo (FO)’ v, LO clyle To Box size L (km)
fit from radar data

KWAJ Radar A
v=-028,L =480km  ~

Varianoe o®(L) (mm¢h)?

Variance of Radar Averages

[mom
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Fit to Radar Data (cont.)

7 [ KWAJ Radar
MELB Radar
JJA 2001 season E JJA 2001 season

v=-0.14, L0 =35km 4 v =-0.28, Lo =480 km

20 40 60 80 100 120

Separation s (km)

Spatial Correlation of 2 km Radar Pixels



Model Fit to Radar Data (cont.)

k KWAJ radar
MELB Radar I\ JJA 2001
JJA 2001 season I f=1.3,t =780 min
p=12,7 =130 min \ o
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Lagged Autocorrelation for MELB and KWAJ Radars

» Model Parameters: JJA 2001 season
» MELB: y,=0.994 (mm/h)?, v=-0.14, L, =35 km, p = 1.2, t, = 130 min
» KWAJ: y,=0.056 (mm/h)?, v =-0.28, L, = 480 km, $ = 1.3, t, = 780 min

[GmoM




Comparing with Observed Gauge Statistics

Gauge Locations (in degrees)

» TRMM GV Data

» Radar (2A53) & Gauge (2A56)
» Nov. 1997 — present

» Radar FOV 300 km diameter
» 1-min averaged rain rates

» 300+ Tipping Bucket gauges
» Eastern Florida

Longitude

» Statistics computed for 3 month season JJA 2001

» Radar statistics computed for the central 128 km box

» 1 min. data aggregated to yield gauge statistics

» Some artifacts from cubic spline fitting of TB data for T < 10 min




Definition of the Gauge Statistics

» Spatial Covariance of a gauge pair separated by
distance p averaged over a time window T

L, (p) = (1/T)2f0TdthTdt' c(p.t=1)

» Variance of the time average: 0,2 = I'/{0) = const. T-2"/@
as T — 0.
» The spatial correlation of a gauge pair: W{p)= I'+{p)/ 07




Results: Fits to Gauge Statistics

TRMM GV Data
2A56 MELB

JJA 2001

TRMM GV Data

2A56 KWAJ
JJA 2001

Gauge Variance o,” (mm? h®)

Gauge Variance o, (mm? h?)
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A Short Distance Cut-off:

Asymptotic behavior of radar and gauge variances in the v < 0 case:

o, ~A+BL™', 07 ~ const. T™""

Power-law behavior apparent from the model plots on a log-log scale.

® Gauge data show a tendency for gauge variance o2 to approach a constant
value oy? as T— 0 contrary to radar data.
® A possible solution to this dilemma:

Introduce a short distance (“ultraviolet”) wave number cut-off

T,(1+ K°L) 5 k<1/A
T, =
‘ 0 k>1/A

This renders the small scale limit g,? finite:
) 1 2 2 v
0t = St} (14 2/m)" -1

® Consistency with radar data requires A to be small compared to the radar
resolution (2 km). MELB data yields the estimate A= 0.19 km and ‘
KWAJ data yields A~ 0.36 km




Conclusions

e \We have described a spectral model of rainfall in terms of a
stochastic differential equation of fractional order.

e The model gives a unified description of the second moment
statistics of both radar and rain gauge observations. When the
parameters are determined from radar data, they also fit the
gauge statistics without any further adjustment.

e The new feature of the model is the use of a fractional order
time derivative, which signifies the presence of memory.

e We plan to apply the model to radar-gauge statistical inter-
comparison studies in the context of GPM ground validation.

Theant U fou!



