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Numerical Simulations
OpenFoam, opensource CFD solver
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CFD solver: properties

Volume of Fluid phase-fraction solver for two incompressible fluids (interFoam). Viscous

fluid is glycerol 98.5%, dynamic viscosity 1.0445 Pa s, laminar flow with Newtonian

rheology.
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Numerical Simulations
OpenFoam, opensource CFD solver

front position
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OpenFoam Screenshots

t=2.2 s. Application of contour filter to find front position on rigid bed.
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Numerical Simulations
OpenFoam, opensource CFD solver

front position
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OpenFoam Screenshots

t=7.5 s. Application of contour filter to find front position on rigid bed.
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Numerical Simulations
OpenFoam, opensource CFD solver

OpenFoam Screenshots

t=2.8 s. Application of elevation filter to find front position on entrainable bed.
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Numerical Simulations
OpenFoam, opensource CFD solver

OpenFoam Screenshots

t=4.0 s. Application of elevation filter to find front position on entrainable bed.
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Numerical Simulations
Run-out tracking with OpenFoam
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Run-out plots

Plot 1: Bed depth constant: 3 mm, bed length varied: 5 cm, 10 cm, and 20 cm

compared with no bed. Plot 2: Bed length constant: 20 cm, bed depth varied: 3 mm, 6

mm, and 12 mm compared with no bed.
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Numerical Simulations
Parameter Analysis
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% Influence of different parameters on run−out increase

mean depth length volume d × l d × v l × v d × l × v

Y (%increase) = 5.14 + 3.67l + 0.96d − 0.92v − 0.73(d × l) + 0.73(l × v)

Where l is normalized on the interval (5,20) cm, d on the interval (3,12) mm and v on the

interval (600,800) ml.

Increase in front position compared to the no bed case after 30 s (mean =5.14%).

Bed length was the most important controlling parameter for run-out increase.
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Experimental study
The laboratory flume

mobile reservoir back wall
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Experimental Study
Cameras: Raw images

Camera 1

Images of vertical/longitudinal

cross-section. Above:

5cm-long by 3mm-deep bed,

all dyed for surface

identification. Below:

5cm-long by 6mm-deep bed,

differentially dyed for interface

identification.

Camera 2

Bird’s-eye-view of run-out

zone, allowing front tracking

of run-out.
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Bulk Dynamics
Run-out Measurements
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Space-Time plots of flow front

Comparison between the run-out of a no-bed case, a 3 mm-deep bed and a 6-mm deep

bed. Bed length is 10 cm.
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Bulk Dynamics
Run-out Measurements
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Space-Time plots of flow front

Comparison between the mean run-out of a no-bed case, a 5 cm-long bed, a 10 cm-long

and a 15 cm-long bed. Bed depth is 6 mm.
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Internal Dynamics
Shear + PIV Profiles
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Internal Dynamics
Shear + PIV Profiles
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Internal Dynamics
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Internal Dynamics
Tracking the entrainment interface
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Interface progression plots

Maximum entrainment front position with time. left: Bed depth 3 mm, bed length: 5

cm, 10 cm, and 15 cm. right: Bed depth 6 mm, bed length: 5 cm, 10 cm, and 15 cm.
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Conclusion
How does the presence of the bed influence the run-out?

Numerical and experimental results show entrainment causes an increase in
run-out after a finite time.

Parameter analysis: bed length is the most important controlling factor
for run-out increase.

Displaced (entrained) material overflows bed at downstream end,
significantly before the entraining front reaches the same position.

Experiments show bed surface uplift and “shear bands”, induced
downstream by the entraining front.

In a deeper bed, the effects of the incoming front propagate
downstream faster.

The entraining front slows down after effects of the end of the bed are felt.
A longer bed allows the front to travel at a faster speed for longer.

B. Bates, C. Ancey (EPFL) Viscous Gravity Currents with Entrainment EGU, 2013, NH3.16 12 / 14



Conclusion
How does the presence of the bed influence the run-out?

Numerical and experimental results show entrainment causes an increase in
run-out after a finite time.

Parameter analysis: bed length is the most important controlling factor
for run-out increase.

Displaced (entrained) material overflows bed at downstream end,
significantly before the entraining front reaches the same position.

Experiments show bed surface uplift and “shear bands”, induced
downstream by the entraining front.

In a deeper bed, the effects of the incoming front propagate
downstream faster.

The entraining front slows down after effects of the end of the bed are felt.
A longer bed allows the front to travel at a faster speed for longer.

B. Bates, C. Ancey (EPFL) Viscous Gravity Currents with Entrainment EGU, 2013, NH3.16 12 / 14



Conclusion
How does the presence of the bed influence the run-out?

Numerical and experimental results show entrainment causes an increase in
run-out after a finite time.

Parameter analysis: bed length is the most important controlling factor
for run-out increase.

Displaced (entrained) material overflows bed at downstream end,
significantly before the entraining front reaches the same position.

Experiments show bed surface uplift and “shear bands”, induced
downstream by the entraining front.

In a deeper bed, the effects of the incoming front propagate
downstream faster.

The entraining front slows down after effects of the end of the bed are felt.
A longer bed allows the front to travel at a faster speed for longer.

B. Bates, C. Ancey (EPFL) Viscous Gravity Currents with Entrainment EGU, 2013, NH3.16 12 / 14



Conclusion
How does the presence of the bed influence the run-out?

Numerical and experimental results show entrainment causes an increase in
run-out after a finite time.

Parameter analysis: bed length is the most important controlling factor
for run-out increase.

Displaced (entrained) material overflows bed at downstream end,
significantly before the entraining front reaches the same position.

Experiments show bed surface uplift and “shear bands”, induced
downstream by the entraining front.

In a deeper bed, the effects of the incoming front propagate
downstream faster.

The entraining front slows down after effects of the end of the bed are felt.
A longer bed allows the front to travel at a faster speed for longer.

B. Bates, C. Ancey (EPFL) Viscous Gravity Currents with Entrainment EGU, 2013, NH3.16 12 / 14



Conclusion
How does the presence of the bed influence the run-out?

Numerical and experimental results show entrainment causes an increase in
run-out after a finite time.

Parameter analysis: bed length is the most important controlling factor
for run-out increase.

Displaced (entrained) material overflows bed at downstream end,
significantly before the entraining front reaches the same position.

Experiments show bed surface uplift and “shear bands”, induced
downstream by the entraining front.

In a deeper bed, the effects of the incoming front propagate
downstream faster.

The entraining front slows down after effects of the end of the bed are felt.
A longer bed allows the front to travel at a faster speed for longer.

B. Bates, C. Ancey (EPFL) Viscous Gravity Currents with Entrainment EGU, 2013, NH3.16 12 / 14



Conclusion
How does the presence of the bed influence the run-out?

Numerical and experimental results show entrainment causes an increase in
run-out after a finite time.

Parameter analysis: bed length is the most important controlling factor
for run-out increase.

Displaced (entrained) material overflows bed at downstream end,
significantly before the entraining front reaches the same position.

Experiments show bed surface uplift and “shear bands”, induced
downstream by the entraining front.

In a deeper bed, the effects of the incoming front propagate
downstream faster.

The entraining front slows down after effects of the end of the bed are felt.
A longer bed allows the front to travel at a faster speed for longer.

B. Bates, C. Ancey (EPFL) Viscous Gravity Currents with Entrainment EGU, 2013, NH3.16 12 / 14



The End

Thank you for your attention

Any questions?
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Experimental Study
Runs and Parameters

Table: Camera Properties, Set-up Characteristics, Fluid Properties

Bed Length 5 cm 10 cm 15 cm
Bed Depth 0 mm 3 mm 6 mm 0 mm 3 mm 6 mm 0 mm 3 mm 6 mm

Volume released 800 ml from reservoir 30 cm long × 10 cm wide
Solution Concentration 98.5 % glycerol by weight; 1.5 % distilled water
Fluid Viscosity 1.0445 Pa s
Fluid Density 1.2572 g cm−3

Fluid Temperature 20◦C

Camera 1 Properties Camera 2 Properties
Exposure Time 4.5 ms 10 ms
Frame Period 8.5 ms 200 ms
Acquisition Time 10–12 s 40–50 s
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