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Basic considerations

• Basic principle in geodesy:

– Observations are directly used to estimate parameters

• In GNSS processing this principle is neglected

• Observations are combined beforehand to form  

derived observations

– Linear combinations, differences, …
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Basic considerations

• Basic principle in geodesy:

– Observations are directly used to estimate parameters

• In GNSS processing this principle is neglected

• Observations are combined beforehand to form  

derived observations

– Linear combinations, differences, …

Why not use them directly?
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Principles for precise orbit determination

• Use all available observations as they are observed
– Code and phase 

• No forming of differences
– Between epochs, receivers, transmitters

• No forming of linear combinations
– Wide-lane, Ionosphere-free, …

• Known influences are corrected beforehand
– Relativistic effects, transmitter clock error, phase wind-up, …

• Remaining influences are added as parameters
– Ionospheric refraction, unknown ambiguities, antenna center 

variations, …

Goal: kinematic orbits for gravity field determination
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Observation equations

Code pseudo range

Phase observation

known 

influences
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Observation equations
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Building normal equation

• Epoch dependent parameters
– Position (x,y,z), receiver clock error and ionosphere parameter 

for each satellite-receiver combination

– Ionosphere parameter is eliminated 

– 4x4 block remains for each epoch (main diagonal)

• Epoch independent parameters
– Ambiguities 

• for each continuous track of a satellite 

• for each carrier frequency

– Antenna center variations 

• Receiver

• Transmitter
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– Ionosphere parameter is eliminated 
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Normal equation

Kite structure

Ambiguity for each track

(L1 and L2)

L1/L2 or P1 or P2 

antenna center variations

receiver

L1/L2 or P1 or P2 

antenna center variations

transmitter

Position and clock error

for each epoch

Ionosphere parameter

eliminated
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Antenna center variations

For code and phase observations

For receiver

• Spherical harmonics expansion

For transmitters

• Radial basis functions

Degree 0 and 1 omitted to avoid singularity

(constant and origin of antenna)

Both representations are azimuth-elevation dependent
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Antenna center variations – Example L1/L2

• GOCE • GRACE A • SVN 41 (Block IIR-A)
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Antenna center variations – Example P1

• GOCE • GRACE A • SVN 41 (Block IIR-A)



Institute of Theoretical Geodesy and Satellite Geodesy

Norbert Zehentner EGU 2013 11.04.2013 17

Raw GNSS measurements

• Measurements as they are observed

Advantages

• Original noise level

• Parameters are not mixed up
– Ambiguities on each frequency can be accessed directly

– Gives possibility to fix them

Disadvantages

• Influences are not eliminated/reduced
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Results for GOCE

Example: GOCE 02.11.2009 10:00 – 15:00

Compared to official reduced-dynamic orbit 

rms: along: 1.7 cm  /  across: 1.2 cm  /  radial: 2.3 cm
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rms: along: 1.7 cm  /  across: 1.2 cm  /  radial: 2.3 cm

Results for GOCE

Example: GOCE 02.11.2009 10:00 – 15:00

Compared to official reduced-dynamic orbit 

Degree variances

November 2009
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Results for GRACE

Example: GRACE A, 01.05.2008 10:00 – 15:00

Compared to official reduced-dynamic orbit

IGS values for transmitter antenna center variations used 

 nadir dependent

rms: along: 2.3 cm  /  across: 2.0 cm  /  radial: 2.7 cm
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Results for GRACE

Example: GRACE A, 01.05.2008 10:00 – 15:00

Compared to official reduced-dynamic orbit

Radial basis functions used for transmitter antenna center 

variations   azimuth-nadir dependent

rms: along: 1.8 cm  /  across: 1.5 cm  /  radial: 2.0 cm
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Results for GRACE

Example: GRACE A, 01.05.2008 10:00 – 15:00

Compared to official reduced-dynamic orbit

Radial basis functions used for transmitter antenna center 

variations (azimuth-nadir dependant) 

Degree variances

May 2008
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Conclusions

• Method is straightforward

• Well suited for modernized GNSS environment 
with additional frequencies (L5,…)

• Ambiguities are directly accessible on each 
frequency  integer nature is preserved

• Antenna center variations can be estimated
– For receivers and transmitters

– For phase and code observations

• Current results are suitable for gravity field 
recovery
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Conclusions

• Next steps:

–Ambiguity fixing

–Compute longer time series 

• CHAMP, GRACE, and GOCE

–Prepare for SWARM

–Validation in terms of position and gravity field results

• The orbits will be published: itsg.tugraz.at
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Thank you for your attention!


