HOW AMBIENT HUMIDITY MAY AFFECT THE TRANSMISSION OF VIRAL INFECTIOUS DISEASES

Wan Yang¹, Linsey C. Marr², Subbiah Elankumaran³

¹Environmental Health Sciences, Columbia University ²Civil and Environmental Engineering, Virginia Tech ³Biomedical Sciences and Pathobiology, Virginia Tech

Virus Transmission v. Ambient Humidity

- Many viral diseases could be airborne
 - Influenza

Measles

SARS

- Foot and mouth disease
- Common cold (rhinovirus, etc.)
- Humidity affects viral transmission
 - Bioaerosol size, deposition
 - Virus survival

Mechanisms Unclear

- Better prevention
- Identify experimental confounders

Why would a virus within an aerosol be affected by ambient humidity?

Relative humidity (RH) v. Evaporation

- ► Enveloped v. non-enveloped viruses
 - Lipid membrane: hydrophobic
 - Surface proteins
 - Capsid structure
- Enveloped viruses: lower RH
- Non-enveloped: higher RH

Enveloped

Non-enveloped

How RH affects a virus within an aerosol?

- Remove structural water -> damage the capsid (non-enveloped)
- Change in surface area (surface inactivation)
 - Protein unfolding -> damage the envelope
- Change in solute concentration (toxicity)
 - Ions bind to envelope -> damage envelope
 - Retain structural water -> protect capsid (non-enveloped)

- Change in pH (conformational changes)
 - Low pH -> unfolding -> damage
 - Depends on sensitivity to pH

RH may affect distribution patterns of diseases (case study: influenza)

▶ Influenza spreads in winter in temperate regions

▶ In rainy seasons in some tropical regions

Low RH

Influenza Viability v. RH in Mucus

Viability and Three RH Regimes

Low RH (<50%)

Efflorescence occurs

 \Rightarrow

solutes cannot harm virus ⇒ viability is maintained

solutes in droplet crystallize

Medium RH

Very high RH

Minimal
evaporation ⇒
physiological
conditions are
maintained in
droplet ⇒ viability
is maintained

Elevated solute concentrations may harm virus

Conclusions

- Humidity could affect the transmission of viral diseases
 - Water activity
 - Surface inactivation
 - Salt toxicity
 - Conformational change
- ► The relationship between RH & viability may modulate the distribution of viral infectious diseases
- Better understanding, better prevention

Sources:

- ▶ Yang W, Marr LC. Mechanisms by Which Ambient Humidity May Affect Viruses in Aerosols. *Appl Environ Microbiol*. 2012; **78**(19): 6781-8.
- ▶ Yang W, Elankumaran S, Marr LC. Relationship between Humidity and Influenza A Viability in Droplets and Implications for Influenza's Seasonality. *PloS One*. 2012; **7**(10): e46789.
- ► Viboud C, Bjrnstad ON, Smith DL, Simonsen L, Miller MA, Grenfell BT. Synchrony, waves, and spatial hierarchies in the spread of influenza. *Science*. 2006; **312**(5772): 447-51.
- ▶ Moura FE, Perdigao AC, Siqueira MM. Seasonality of influenza in the tropics: a distinct pattern in northeastern Brazil. *Am J Trop Med Hyg*. 2009; **81**(1): 180-3.
- ► Carr CM, Kim PS. Flu Virus Invasion: Halfway There. *Science*. 1994; **266**(5183): 234-6.
- http://kbosweeney.files.wordpress.com/2010/10/cold.jpg
- http://www.elu.sgul.ac.uk/rehash/guest/scorm/343/package/content/ nuclear_envelope.htm

