
3 

3b 

3a 

   Wave climate projections using statistical downscaling for the Gold Coast (Australia) 
Ana RUEDA(1), Paula CAMUS(1), Fernando J. MÉNDEZ(1), Marcello SANO(2), Darrel STRAUSS(2) and  Mark HEMER(3)   

  (1)Environmental Hydraulics Institute “IHCantabria”, Universidad de Cantabria, SPAIN. (2)Griffith Center for Coastal Management, Griffith University, AUSTRALIA. (3)Centre for Australian Weather and Climate Research, AUSTRALIA   

IN
TR

O
D

U
C

TI
O

N
 

M
ET

H
O

D
O

LO
G

Y 

C
O

N
C

LU
SI

O
N

S 

MOTIVATION 
Gold coast beaches are periodically affected by large wave events originating erosion and flooding episodes. The willing to 
develop adaptation strategies for coastal communities for the future has motivated this study, since it would be necessary to 
analyze the changes in ocean wave heights. However, this variable is not directly available from the output of global climate 
models. Useful projections of future wave height climate need to be produce through dynamical or statistical ‘downscaling’ 
approaches.  

OBJECTIVES 
To generate high resolution shallow water sea state time series. 
To develop and validate a statistical downscaling model to relate an atmospheric field with deep water or local sea states 
To provide wave climate projections for different scenarios of the Access 1.0 CIMP5model. 

•The predictor must be defined in two areas, a local area which take into consideration the waves generated in the last day, and a larger area to account the swell 
waves that are formed by larger storms and travel to the coast defined by the n-days average pressure fields. 
•The simplicity and the minimum computational time required are the main advantages of this kind of statistical methods, allowing an easy multimodel ensemble of 
CIMP5 models.. 
•The use of spectral data for the wave climate characterization has helped on the development of the statistical model. 
•Wave climate projections at the Gold Coast region indicate a relatively small decrease in mean SWH (less than 5%) for both scenarios tested. 
•Future works would be based on the comparison of projection results from statistical and dynamical downscaling in Gold Coast region. 
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ATMOSPHERIC REANALYSIS DATA from the US National Center for Environmental 
Prediction (NCEP) Climate Forecast System Reanalysis (NCFSR; Saha et al., 
2010). This reanalysis spans from 1979 to 2009 with an hourly temporal 
resolution and 0.5ºx0.5º spatial resolution. 
WAVE REANALYSIS DATA kindly provided by Dr. Hemer. This model hindcast was 
forced using the NCFSR winds and sea-ice concentrations. The output is an 
hourly wave spectra defined by a directional resolution of 15º (24 directions) 
and 32 frequency bands for the 30 years of data (1979-2009).  

STEP 1. PREDICTOR 

INSTRUMENTAL DATA  Byron bay buoy which spans from 1976 to 2010. 
          Gold Coast buoy year 2008. 

STEP 2. PREDICTAND 

STEP 3. STATISTICAL MODEL (WEATHER TYPES) 

STEP 4. VALIDATION  

CALIBRATION SELECTION 

PROPAGATION 

RECONSTRUCTION 

VALIDATION 
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 Fig. 2. Cumulative distribution function of Hs, original (green), 
instrumental (blue) and calibrated (red) series. 

Directional calibration with the instrumental data, by fitting the 
parameters of a potential function that relates the wave 
instrumental data to the simultaneous reanalysis data for each 
directional bin (Mínguez et al., 2011). 

 Fig. 1. Calibration parameters 

d=1 

d=16 

Data dimension reduction - PCA 

Fig.3. EOF´s that explain the 
95% of the variance data. 

Selection - KMA 

Fig.4. KMA 
selection 

Fig.5. 10x10 representative spectral patterns of deep water wave climate 
using KMeans classification. [units: cm] Local wave propagation of the 100 cases selected using SWAN model  
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Fig. 6. 
Example of 
propagation 

RBF interpolation technique 

Fig. 7. RBF sketch 

Fig. 9. Validation of propagation procedure with the statistical parameters Hs, Tp and Dir on the Gold Coast buoy position 

Effective fetch analysis 

Fig.10. Influence area of storm generation Gold Coast, Australia 

Predictor area 

Fig.11. Areas and resolution of the predictor, taking into 
consideration the sea and swell components.  

Squared SLP gradient (i.e. sum of the squared zonal 
and squared meridional SLP gradients) are defined 
as atmospheric predictors due to its physical 
meaning such they are proportional to the squared 
wind speed, and consequently roughly proportional 
to wave height. 
In order to reproduce the swell and sea components 
of waves, the spatial atmospheric pattern introduced 
as predictor in the statistical model is defined by the 
previous 3-days-averaged of squared SLP gradient 
field in the large area and daily averaged of the 
square SLP gradient field in the small one (local 
area). This predictor is calculated daily for the 30 
years of data. 

In order to reduce the dimensionality a PCA analysis is 
done. We have used the standardized signal of the 
squared SLP gradient to reduce the model climate 
biases. Afterwards, we have done the KMA 
classification in a lattice of 15x15 synoptic patterns to 
be able to represent properly the different 
atmospheric situations due to the large atmospheric 
variability in the study area.  

Fig.12. Synoptic patterns (anomalies of squared SLP gradients). Upper panel: large  
scale predictor. Lower panel: local predictor.  

Fig.14. Near shore wave height histogram for each weather type.  Fig.13. Deep water mean spectra for each weather type.  

The model is based on the idea that for a certain period of time knowing the occurrence probability of each 
weather type, it is possible to estimate the predictand.   

Y=f(H)= ∑ fi(H)  pi  
 

During the calibration period the predictor as much as the predictand are considered known and the 
weather type classification is made.  Therefore, the results are the classification of the predictor (X, figure 
12) and the corresponding significant wave height distribution for each one (Y=f(H), figures 13 and 14). 
For any other timeframe the appearance probability (pi’) of each weather type would change but the wave 
height distribution associated is considered constant. Consequently, it would be possible to define the 
predictand based on the new occurrence probabilities. 

f(H)’=∑ fi(H)  pi’  
 

Monthly 

Fig.15. Monthly probability of each weather type 
(atmospheric conditions). Validation period. 

Fig.16. Monthly deep water spectral comparison 
Fig.17. Time series of the monthly near shore significant wave height real and 
modeled. The upper graph is the mean wave height and bottom graph is the 95 
percentile wave height.  

Fig. 19. Sketch with the different periods  and scenarios of projections 

Fig. 18. Global Anthropogenic Radiative Forcing 
for the high RCP8.5, the medium-high RCP6, the 
medium-low RCP4.5 and the low RCP3-PD. 
Source:  Meinshausen (2011) 

NEARSHORE 

For a certain period of time, we must 
know the variation on the occurrence 
probability of each weather type. 

Fig. 20. Variation on the occurrence probability of each weather 
type for the different scenarios during the years 2070-2099. Left 
panel: rcp45 scenario, right panel:rcp85 scenario 
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Fig. 21. Percentage of change on the mean spectra for each period of time. Fig. 22. Standard deviation of monthly mean SWH for each time period and scenario. 

Fig. 23. Percentage of change in SWH for 
each time period. Upper panel:rcp45.Lower 
panel:rcp85.  

Deep water 

Fig. 8. Time serie reconstruction on P1, located in the 
position of the Gold Coast Buoy 
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HYBRID METHODOLOGY TO TRANSFER WAVE CLIMATE TO COASTAL AREAS 
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STATISTICAL DOWNSCALING 

The predictand is defined by the corresponding sea states of each synoptic pattern on the target point 
during the calibration period (1979-1999).  
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