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INTRODUCTION

Steep, rectilinear slopes are frequently
considered as being controlled by
structural elements. A number of
studies automatically take the linearity
of landforms as prove for structural,
most frequently fault control. However,
this logical but not unequivocal
conclusion needs careful verification,
because divers geomorphic process
alone can also result in straight valley
sides, river stretches etc. Structural
control on such landforms can be
difficult to prove, because of poor
outcrop conditions, and the lack of
adequate surface and subsurface data
sets. Itis particularly true for landforms

Fig. 1: The location of the study area

The investigated study area is situated in the transition zone between
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The hilly area is mostly covered by
Miocene sediments (Fig. 3). The
mesoscale geomorphological units
of the study area are influenced by
the uplifting metamorphic core
complex of KoOszeg-Rechnitz
Mountains (Tari - Horvath 1995),
by the also metamorphic and
relatively uplifting Vas Hill as well
as by the subsiding grabens. There
are two dominant flow directions
alternating downstream. Valley
segments are often bordered by
which were
identified by previous research as
listric normal faults and grabens.
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All these data permitted to build a 3D model for a particular
drainage anomaly located in the western Pannonian Basin, its

on to the Eastern Alps. The combined data set suggest that

en echelon normal or oblique-normal faults controlled linear ENE

g segments of the Arany creek, which is almost
dicular to the general flow direction. The en echelon faults

could be part of a sinistral shear zone, which occur between the
Rechnitz and Eisenberg windows of the Penninicum. If this fault
was kinematically connected to others at the window’s margin,
their tectonic exhumation might have continued after the main
early to mid-Miocene phase. The fault zone could be initiated in the
late Miocene (Pannonian) around 9 Ma, and was active afterword.
Exact timing of this deformation was not determined neither
neotectonic activity proved. However, our study shows that the

iocene basin fill of the Pannonian Basin was deformed

considerably. The otherissue of our work is that the combination of
diverse methods is useful, sometimes inevitable for checking the
al structural control and landform and landscape evolution.
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Fig. 3: Geology of the study area

Few outcrops permitted |
observations on brittle
structures and provided A
information on potential larger-
scale structures. In the close
vicinity of the Torony slope, a
sandpit exposes the Upper
Miocene sequence, silt, organic-
rich clay and cross-laminated
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sand. Several sets of faults and
joints affected the poorly
consolidated sediments.
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: Resulted fault map. Faults derived from: 1- topography,
rehole data, 3 — topo. and boreholes; 4 - MUEL, 5 - VES,

Fig. 17: 3D view of resulted fault planes
Acknowledgement:

We highly appreciate the helpful comments of Gabor Csillag, Laszlo
Lenkey, Ferenc Horvath, Zsofia Ruszkiczay-Ridiger. This study
was carried out in the framework of a project sponsored by the
Hungarian Scientific Research Fund (OTKA NK 83400) and TAMOP-
4.2.2/B-10/1-2010-0030.

References:

Jod, I. 1992. Recent vertical surface movements in the Carpathian
Basin. Tectonophysics 202 129-134.

Ruszkiczay-Ridiger, Z.; Fodor, L. & Horvath, E. 2007. Neotectonic
and landscape evolution of the Go6doll6 Hills, Central Pannonian
Basin Global and Planetary Change 58 181-196
Ruszkiczay-Ridiger, Z.; Fodor, L.; Horvath, E. & Telbisz, T. 2009.
Discrimination of fluvial, eolian and neotectonic features in a low
hilly landscape: A DEM-based morphotectonic analysis in the
Central Pannonian Basin, Hungary. Geomorphology 104 203-217.
Tari, G. & Horvath, F. 1995. Middle Miocene extensional collapse in
the Alpine-Pannonian transitional zone, in: Horvath, F., Tari, G,,
and Bokor, K. (Eds.): Extensional collapse of the Alpine orogene
and hydrocarbon prospects in the basement and fill of the western
Pannonian Basin, AAPG Inter. Conf. and Exhib., Nice, France,
Guidebook to fieldtrip No. 6, 75-105.




