

A Smart Elicitation Technique for Informative Priors in Ground-Motion Mixture Modelling

A. K. Runge, A. Händel, C. Riggelsen, F. Scherbaum — Institute of Earth and Environmental Science, University of Potsdam

Antonia.Runge@geo.uni-potsdam.de, Annabel.Haendel@uni-potsdam.de, Carsten.Riggelsen@geo.uni-potsdam.de Frank.Scherbaum@geo.uni-potsdam.de

1. Motivation

Geoscientific processes and systems are often described by models making simplifying assumptions. Insufficient/incomplete observations and poor/inadequate understanding of the underlying relationships often result in the development of competing models.

In probabilistic seismic hazard analysis (PSHA), e.g., the ground motion at a particular site of interest is typically estimated as an empirical function of source, path and site related parameters.

Following issues arise:

- Competing ground motion prediction equations (GM-PEs) developed for sites with many available observations (e.g., California, etc.) capture different physical aspects.
- Foreign GMPEs must be applied if sparse seismic data is observed or if no dedicated model was developed for a site.
- One large source of uncertainty is the selection and judgement of appropriate GMPEs.

2. Bayesian Mixture Modelling

A standard mixture model aggregates several existing GMPEs (Fig. 1), instead of having a single model that tries to capture the possible ground motion at the site of interest. ^a

 $\mathsf{GMPE}_{mix}(x) = \sum_{i=1}^n w_i \mathsf{GMPE}_i(x)$, for n component GMPE_i .

Fig. 1: GMPEs and mixture model for an Mw 6 interface event. Left: distribution in 120 km distance. Right: peak ground acceleration (PGA) versus distance.

The mixture weights capture appropriateness of GMPEs in the mixture. Their distribution is estimated within a Bayesian statistical framework:

$$f_{\mathsf{posterior}}(w_i) \varpropto f_{\mathsf{prior}}(w_i) \cdot p(data|w_i)$$
,

for the likelihood $p(data|w_i)$ of observations data.

A priori distributions are typically chosen based on algebraic and/or computational convenience rather than attempting to capture domain expert's beliefs. Partly because it is thought to be a non-trivial task to elicit expert knowledge in terms of a distribution.

A major challenge for experts in this context is: b

- to provide logically consistent probability estimates (in the sense of Kolmogorov's axioms),
- to be aware of the multitude of heuristics, and
- to minimise biases affecting judgement under uncertainty.

3. A Smart Elicitation Tool (SmElT) to Quantify Expert Belief

Fig. 2: Representation of two different ways to elicit subjective probabilities.

Simple elicitation task with the platformindependent, interactive program: ^a

- Quantification, elicitation and transfer of expert knowledge into degree of belief (DOB) distributions $f_{prior}(w_i)$.
- tive weights for small model subsets, instead of a single step task (Fig. 2 and 3).

Optimization of the model subset presented to the expert in each

- Experimental design theory is applied.
- maximizes the expected information based on all previously conducted trials.

Results of the elicitation process:

- A set of logically consistent probabilities: best-fit solution to the set of elicited constraints (Fig. 4).
- A measure of confidence: amount of conflicting information provided by the expert during the relative weighting process (Fig. 5).

4. Data and GMPEs

Data: 371 interface and 713 intraslab strongmotion records (49 and 90 events respectively) from Northern and Central Chile coming from:

- Arango et al. (2012),
- IPOC network, year 2006 2012.

GMPEs: 9 GMPEs developed for different subduction zones of the world.

	Model	Short
_	Youngs et al. (1997) Zhao et al. (2006) Kanno et al. (2006) Atkinson and Boore (2003) Lin and Lee (2008) BC Hydro (2013) Mc Verry et al. (2006)	y97 z06 k06 ab03 ll08 bch13 mv06 a10
	Arroyo et al. (2010) Garcia et al. (2005)	a10 g05

Fig. 3: A fictional elicitation trial conducted with our program, where 4 GMPEs are judged relativ to each other.

and corresponding residual uncertainty (grey boxes).

5. The Impact of Priors

Do large numbers of records overrule the prior distribution?

- Define a priori distributions $f_{prior}(w_i)$ based on different scenarios of likely expert behaviors.
- Kullback-Leibler distance (KLD) measures the information difference of two distributions:

$$\mathsf{KLD} = \int \log_2 \left(\frac{f_{\mathsf{prior}}(x)}{f_{\mathsf{posterior}}(x)} \right) f_{\mathsf{prior}}(x) \mathsf{d}x$$
 .

- KLD measures information difference in bits: "How many questions need to be asked to return from $f_{\mathsf{posterior}}(x)$ to $f_{\mathsf{prior}}(x)$?"
- Result: If the prior is too sharp (small variance) the data is not able to shift the posterior into its supported region, even if many records are available (Fig. 6).

Fig. 6: $f_{prior}(w_i)$ and $f_{posterior}(w_i)$ after the update with 371 interface or 713 intraslab records and KLDs.

6. The Impact of Data

Consistency of

Your Statements'

Does information converge at a particular number of records or events? - Analysis of the KLDs:

Random

Statements°

- Apply non-informative priors to measure solely the influence of data.
- Add events as they occur in time, backwards and randomly.
- Result: Some data or events shift particular mixture-weight distributions more than others. Distinguish and interpret the reasons for and against the support of different models by the data (Fig. 7).

Fig. 7: KLDs with an increasing number of interface or intraslab events for 3 different orderings.

^aRiggelsen et al. (2011)

 $^{^{\}prime\prime}$ O'Hagan et al. (2006), Scherbaum and Kühn (2011), Tversky and Kahneman (1974)

^a A.K. Runge et al. (2013)

^uCurtis and Wood (2004)