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1. Motivation

Geoscientific processes and systems are often described by
models making simplifying assumptions. Insufficient/incomplete
observations and poor/inadequate understanding of the underlying
relationships often result in the development of competing models.

In probabilistic seismic hazard analysis (PSHA), e.g., the ground
motion at a particular site of interest is typically estimated as an
empirical function of source, path and site related parameters.

Following issues arise:

e Competing ground motion prediction equations (GM-
PEs) developed for sites with many available observations
(e.g., California, etc.) capture different physical aspects.

e Foreign GMPEs must be applied if sparse seismic data is
observed or if no dedicated model was developed for a site.

e One large source of uncertainty is the selection and
judgement of appropriate GMPEs.

2. Bayesian Mixture Modelling

A standard mixture model aggregates several existing GMPEs
(Fig. 1), instead of having a single model that tries to capture the
possible ground motion at the site of interest. *

3. A Smart Elicitation Tool (SmEIT) to Quantify Expert Belief

Expert
Knowledge

O s
* *
..... .
----------- %
.
\J
.
.
*e

‘e

L TN
..........
. -
. 3
* LJ

Trial 2

P

“.pu RALIOS R, =P./P,

for a subset

Algorithm

Fig. 2: Representation of two different ways to elicit
subjective probabilities.

1. Which alternative would you prefer most within the set of possibilities below?

Kanno et al. 2006 *® Abrahamson & Silva 2008

2. How large is your degree of belief in each alternative relative to Abrahamson & Silva 2008 ?
3 —|+ 4« Kanno et al. 2006 4 : 5 Abrahamson & Silva 2008

—|+ 4 Fukushima et al. 2003 1 : 20 Abrahamson & Silva 2008
—|+ « Zhaoetal. 2006 1:2 Abrahamson & Silva 2008

Fukushima et al. 2003 Zhao et al. 2006

Almost ZERO As STRONG as for Abrahamson & Silva 2008

Fig. 3: A fictional elicitation trial conducted with our program,
where 4 GMPEs are judged relativ to each other.

5. The Impact of Priors

Simple elicitation task with the platform-
independent, interactive program: “

e Quantification, elicitation and transfer
of expert knowledge into degree of
belief (DOB) distributions frior (w3 ) -

Sequential evaluation of rela-
tive weights for small model sub-
sets, instead of a single step task
(Fig. 2 and 3).

? A XK. Runge et al. (2013)

Optimization of the model subset
presented to the expert in each
trial: “

e Experimental design the-
ory is applied.

e The design maximizes
the expected information
based on all previously
conducted trials.

“ Curtis and Wood (2004)
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Fig. 4: Distribution of an expert’s DOB (coloured boxes)
and corresponding residual uncertainty (grey boxes).

Fig. 5: Residual error (SER) of all elicited statements
compared to a zero error (“most consistent”) and to the
error in the case of “random statements”.

Consistency of
Your Statements®

Antonia.Runge@geo.uni-potsdam.de, Annabel.Haendel@uni-potsdam.de, Carsten.Riggelsen@geo.uni-potsdam.de Frank.Scherbaum@geo.uni-potsdam.de

Results of the elicitation process:

e A set of logically consistent
probabilities: best-fit solution
to the set of elicited con-
straints (Fig. 4).

A measure of confidence:
amount of conflicting In-
formation provided by the
expert during the relative
weighting process (Fig. 5).

Random

6. The Impact of Data

Statements®

4. Data and GMPEs

Data: 371 interface and 713 intraslab strong-
motion records (49 and 90 events respec-
tively) from Northern and Central Chile com-
Ing from:

e Arango et al. (2012),

e |IPOC network, year 2006 - 2012.

GMPEs: 9 GMPEs developed for different
subduction zones of the world.
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Fig. 6: forior (w;) and fiosterior (w; ) after the update with 371 interface or 713 intraslab records and KLDs.

Fig. 7: KLDs with an increasing number of interface or intraslab events for 3 different orderings.



