Offshore remote sensing of the ocean by stereo vision systems

Guillermo Gallego (1), P.-C. Shih (2), A. Benetazzo (3), A. Yezzi (2), F. Fedele (4),

2. School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA.
3. CNR-ISMAR, Venice, Italy
4. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, USA.

EGU2014-16134

May 1, 2014
Outline

- Prior vision-based systems for wave measurement
- Variational stereo methods.
- Extensions
 - Enforce wave height models
 - Space-time processing
 - Refinement of camera parameters
- Conclusions
Motivation

- **Topic:** measurements of ocean waves using vision systems.
- **Applications:**
 - Monitoring of sea states
 - Improvement in the design of platforms
 - Study of turbulence and wave mechanics
 - Validation of physical models of the ocean
- **Interdisciplinary work:** ocean eng. and computer vision
Goal: to study and predict ocean wave patterns from image sensors

- **Image acquisition**
 (Bi/Trinocular synchronized and calibrated digital cameras)

- **Image processing**
 Reconstruct the surface of the water (epipolar stereo method)

Water surface elevation in *time*:
from 2D image sequences to 3D map sequences

- $Z_0 \sim 1.70 \text{ m}$, $b = 0.22 \text{ m}$
- Matched Area : $0.94 \times 0.78 \text{ m}^2$
- $e_{rx} = e_{ry} = 0.15 \text{ cm}$, $e_{rz} = 0.69 \text{ cm}$
- 90 % of points matched
- 480 x 640 pixel camera
- $F = 6.3 \text{ mm}$, $ss=1/200 \text{ s}$
Literature review. ATSIS

- Automatic Trinocular Stereo Imaging System (ATSIS) (Wanek and Wu, 2006).
- Virtual wave gauges for measuring surface wave characteristics (Bechle and Wu, 2011).
Three-Dimensional Imaging of the High Sea-State Wave Field encompassing ship slamming events (Brandt et al 2010).
Remote sensing of surf zone waves using stereo imaging (S. de Vries et al, 2011)

Fig. 12. Perspective view of the sample reconstruction of water surface elevation. Color contours denote elevation in meters.

Fig. 13. Perspective view of original camera image mapped onto the three-dimensional water surface elevation.
Literature review. Stereo systems

- Extraction of short wind wave spectra from stereo images (Kosnic and Dulov, 2011).

Problem: gaps (holes) in reconstructed surface

Sample reconstructions:

Spectrum
Wave measurement (stereo reconstruction) overview

Platform: camera setup. Acquisition system (storing, synchronization, calibration, etc.)

Acquired images

3D reconstruction of surface shape

Data analysis (statistics, spectra)
Advantages of variational methods:

• Enforce continuity of the wave surface in space & time: recovered points are not treated independently.
• Improve robustness: less sensitive to matching problems.
• Provide dense surface reconstructions.
• Allow controllability/priors on the unknowns.
• Imply less post-processing than classical methods.
Strategy: adjust a 3D model to the 3D world represented by the data (images) so that an energy functional is minimized.

Deform surface until "best match" is achieved by energy minimization.

Explicit & deformable 3D model of surfaces
Graph representation: \(S(u, v) = (u, v, Z(u, v)) \)

Design a **cost functional** to be minimized:
- Joint estimation of height \(Z(u,v) \) or the waves and its radiance \(f(u,v) \)

Cost:
\[
E(S, f) = E_{\text{data}}(S, f) + \alpha E_{\text{geom}}(S) + \beta E_{\text{rad}}(f), \quad \alpha, \beta > 0.
\]

Data fidelity term:
\[
E_{\text{data}} = \sum_{i=1}^{N_c} E_i \quad \text{where} \quad E_i = \int_{\Omega_i} \phi_i \, dx_i, \quad \phi_i = \frac{1}{2} (I_i(x_i) - f(x_i))^2.
\]

Regularizers: penalize the norm of the gradients of the height and the radiance

Cost as a function of height and radiance
\[
E(Z, f) = \int_{U} L(Z, Z_u, Z_v, f, f_u, f_v, u, v) \, du.
\]

\[\rightarrow \text{Euler-Lagrange equations}\]
Necessary optimality conditions:

System of coupled PDEs in height Z and radiance f of the surface.

\[
\begin{align*}
g(Z, f) - \alpha \Delta Z &= 0 \quad \text{in } U, \\
b(Z, f) + \alpha \frac{\partial Z}{\partial \nu} &= 0 \quad \text{on } \partial U, \\
- \sum_{i=1}^{N_c} (I_i - f) J_i(Z) - \beta \Delta f &= 0 \quad \text{in } U, \\
\beta \frac{\partial f}{\partial \nu} &= 0 \quad \text{on } \partial U,
\end{align*}
\]

Non-linear term (due to data-fidelity cost):

- Focal length
- Depth of point
- Optical ray and Unit Normal
- Radiance deriv
- Photometric error

\[
g(Z, f) = \nabla f \cdot \sum_{i=1}^{N_c} |M_i| \tilde{Z}_i^{-3} (I_i - f)(u - C_i^1, v - C_i^2),
\]

Multigrid solver: standard method for non-linear elliptic boundary value problems like this one.

Steepest descent method for the system of non-linear PDEs.
Elevation method (1 snapshot)

Radiance f Height Z

Reconstructed surface & texture (height Z and radiance f)
Comparison of estimated wave heights

Disparity method

Elevation method
Things we can do & things we are working on

• Enforce wave statistics during estimation.

• Simultaneous snapshot reconstruction.

• Better wave analysis.

• Refinement of (varying) camera parameters.

• Scalable and efficient estimation of wave heights: multiresolution + hardware parallelization.
Enforce wave statistics during estimation

Add a cost penalty to measure statistical wave height distribution error:

\[E_{\text{stat}} := \int_{-\infty}^{\infty} w(\zeta) \frac{1}{2} \left(G(\zeta) - \text{cdf}^Z(\zeta) \right)^2 d\zeta \]

PDFs

Omnidir spectrum

Cost evolution
Simultaneous snapshot reconstr. Time coherence

Data fidelity: measure photo-consistency throughout the video for a candidate surface. Regularizers: enforce spatial and temporal smoothness of the solution (disparity or height & radiance).

$$E_i(Z, f) = \int_T \int_{\Omega_i} \phi_i \, d\mathbf{x}_i \, dt,$$

$$E_{\text{geom}}(Z) = \int_T \int_U \frac{1}{2} \| \nabla Z \|^2 \, d\mathbf{u} \, dt,$$

$$E_{\text{rad}}(f) = \int_T \int_U \frac{1}{2} \| \nabla f \|^2 \, d\mathbf{u} \, dt,$$

Minimization approach:
• Obtain modified Euler-Lagrange eqs \rightarrow set gradient descent eqs.
• Discretize and solve using 3-D multigrid methods.
Elevation method. Estimated wave height volume

Input stereo video (2 cameras) at Crimean Platform:
- Input (subsampled) images: 406 x 309 pixels at 10 Hz frame rate.

Reconstruction:
- Computational grid: 129 x 129 x 1025 points
- Resolution: 10 cm x 10 cm x 0.1 s
- Reconstructed area: 12.8 x 12.8 m²
- #snapshots processed: 5125 (~8.5 min)
Elevation method. Estimated wave height volume

Time

![Time X Y](image)

Time

![Time X Y](image)
Estimated 3-D (power) spectrum

Wave height volume $Z(x,y,t)$

Crimea sequence. Input: 129x129x4100.

Output: 512x512x512
3-D spectrum. Estimation of wave currents

Taking into account the effect of surface currents:

\[
\kappa = \frac{\omega^2}{g}
\]

Linear dispersion (in deep water)

Velocity vector: \(u = (-0.17, -0.45) \) m/s
3-D spectrum. Omni-directional spectrum
Wave height exceedance probability. (disparity method)

Normalized frequency spectrum. disparity method & elevation method

Analysis of time series at virtual probes.
More Applications

• Comparison of theoretical models with real data using wave measurements: H_s, T_p, T_m, etc.

• Statistical analysis: space-time extremes of oceanic states (for the design of offshore structures), etc.

Expected shape of largest waves.

Ratio between the expected maximum wave height over an area and that expected at a point.
Camera calibration refinement

- Camera parameters:
 - Intrinsic: optical components
 - Extrinsic: relative camera pose

- Sources of noise in camera parameters:
 - Manufacturing deviations
 - Manual operation errors
 - Natural factors such as breeze or vibrations
 - Numerical errors during the camera pre-calibration

- Goal: improve robustness of wave measurements with respect to camera perturbations.
Camera calibration refinement

With camera refinement

Without camera refinement

Difference
Conclusions

- Stereo reconstruction methods...
 - have more advantages than classical wave measurements (area vs. point measurements).
 - provide reliable statistics and accurate predictions of ocean waves due to the rich information content of video data.

- Advantages of variational methods for wave measurements:
 - Provide dense wave height field estimations.
 - Allow the enforcement of continuity in space & time.
 - Require less post-processing (few assumptions on data).
 - Allow the incorporation of physics of waves.
 - Allow refinement of camera parameters.

- Disadvantages: computational cost (but feasible).
- Current research: cluster processing – scalability and efficiency.
References

Crimea Data from Dr. Ardhuin.

THANK YOU FOR YOUR ATTENTION.
ANY QUESTIONS?

More information:
http://www.gti.ssr.upm.es/~ggb/
http://savannah.gatech.edu/people/ffedele/Research/