Potential soil organic carbon stocks in semi arid areas under climate change scenarios: An application of CarboSOIL model in northern Egypt

M. Muñoz-Rojas 1,2,4, S.K. Abd-Elmabod3,4, A. Jordán 5, L. M. Zavala 5, M. Anaya-Romero 5 and D. De la Rosa 6

(1) The University of Western Australia, Plant Biology, Perth 6009, Western Australia (mijian.munoz-rojas@uwa.edu.au), (2) Kings Park and Botanic Garden, West Perth, Perth 6005, Western Australia, (3) Soil and Water Use Department, National Research Centre, Cairo, Egypt, (4) MED_Soil Research Group. Department of Crystallography, Mineralogy and Agricultural Chemistry, University of Seville, Spain, (5) Evenor-Tech (CSIC spin-off), Seville, Spain (6) Royal Academy of Sciences University of Seville, Spain

Background

Climate change is predicted to have a large impact on semi arid areas which are often degraded and vulnerable to environmental changes. However, these areas might play a key role in mitigation of climate change effects through sequestration of carbon in soils. At the same time, increasing organic carbon in these environments could be beneficial for soil erosion control, soil fertility and, ultimately, food production. Several approaches have been carried out to evaluate climate change impacts on soil organic carbon (SOC) stocks, but soil carbon models are amongst the most effective tools to assess C stocks, dynamics and distribution and to predict trends under climate change scenarios.

CarboSOIL is an empirical model based on regression techniques and developed to predict SOC contents at standard soil depths of 0 to 25, 25 to 50 and 50-75 cm (Muñoz-Rojas et al., 2013) (Figure 1).

Methods

In this research, CarboSOIL was applied in El-Fayoum depression (Figure 2), a semi arid region located in northern Egypt with a large potential for agriculture.

The model was applied in a total of six soil-units classified according the USDA Soil Taxonomy system within the orders Entisols and Aridisols under different climate climate change scenarios. Global climate models based on the Organisation for Economic Co-operation and Development and the Intergovernmental Panel on Climate Change were applied to predict short-, medium- and long-term trends (2030, 2050 and 2100) of SOC dynamics and sequestration at different soil depths (0-25, 25-50 and 50-75) and land use types (irrigated areas, olive groves, wheat, cotton and other annual crops, and fruit trees and berries).

Discussion of results

According to results, considerable decreases of SOC stocks are expected in the 25-50 cm soil section under all considered land use types and all projected scenarios, in particular in Vertic Torrifluvent and Typic Torrifluvents under wheat, cotton and other annual crops. Oppositely, SOC stocks tend to increase in the deeper soil section (50-75 cm), mostly in Typic Hapludalfs under permanently irrigated areas and olive groves in the 2100 scenario.

In the upper layer (0-25 cm), slight increases have been predicted under all considered land use types.

The methodology used in this research could be applied to other semi arid areas with available soil, land use and climate data. Moreover, the information developed in this study might support decision-making for land use planning, agricultural management and climate adaptation strategies in semi arid regions.

References
