Testing various modes of installation for permanent broadband stations in open field environment
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Abstract

In the framework of the RESIF (Réseau Sismologique et geodésique Francais) project, we plan to install more than one hundred
new permanent broadband stations in metropolitan France within the next 6 years. Whenever possible, the sensors will be

The prototype site is located in the Beauce plain, ~500m north of the small town of Clevilliers (Eure-et-Loir) and 14km from the major city of

installed in natural or artificial underground cavities that provide a stable thermal environment. However such places do not exist Chartres. The nearest highway is ~4km away. The rented 180mz2 parcel is surrounded by farmed fields and protected by a 1m high fence.

everywhere and we expect that about half the future stations will have to be set up in open fields. For such sites, we are thus Near surface geology consists in arable soil and unconsolidated clastic sediments. Water table oscillates from 1 to 5m depth. -

looking for a standard model of hosting infrastructure for the sensors that would be easily replicated and would provide good noise The vaults and the bore_h_ole tube have b_een mstall_ed_ in 3m deep excavations, backfilled _a_nd covered with on-site soil and sand. Pres_sure, S

level performances at long periods. temperature and_ hgmldlty sensors are Installed within each vault and report stable conditions. All sensors are connected through buried cable %

Since early 2013, we have been operating a prototype station at Clévilliers, a small location in the sedimentary Beauce plain, paths to Q330 digitizers installed in a 1m tall outdoor box. %

where we test three kinds of buried seismic vaults and a downhole installation. The cylindrical seismic vaults are 3m deep x

and 1m wide and only differ by the type of coupling between the casing and the concrete slab where we installed insulated

Trillium T120PA seismometers. The downhole installation consists in a 3m deep well hosting a Trillium Posthole seismometer. For period [s]

reference, another sensor has been installed in a ~50cm deep hole, similarly to the way we test every new potential site. > _

Here we compare the noise level in each infrastructure at different frequencies. We observe quite similar performances for the Figure 2 : Coherency analysis g & %

vertical component recorded in the different wells. Conversely, the noise levels on the horizontal components at periods of waveforms from Dec. 14th to S p

greater than 10s vary by more than 20dB depending on the installation condition. The best results are obtained in the completely Dec. 21th 2013. Each subplot

decoupled vault and for the downhole setting, both showing performances comparable to some of our permanent stations represents the coherence spectrum :

installed in tunnels. The amplitude of the horizontal noise also appears to be highly correlated to wind speed recorded on site, computed between each pair of wells and for period [s]

even at long periods. The variable response of each vault to such external forcing can partly explain the variations of the seismic the 3 components (blue= vertical, red=north, N

noise levels. green=east). Coherency spectrum corresponds to S
the cross power spectrum (Fourier transform of the E
covariance function) of the two traces divided by the -
product of their auto-spectra. Spectra have been computed

I T - : every 1/8 octave and averaged over one octave bandwidth.
1. NOlse pOWGr SpeCtraI d@ﬂSltleS dlffer at |Ong pe”Od Coherency values close to unity indicate that the waveforms are ey

linearly related (e.g. similar). All pairs and every component are highly 9 o
coherent in the 2 to 8 seconds band corresponding to the ocean-generated Y =

a) b) secondary microseismic peak. Loss of coherency at shorter and longer periods on S p

] 6L the horizontal components indicates that each hosting infrastructure has a specific

transfer function and that the recorded signal does not generally correspond to true
ground oscillations.
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