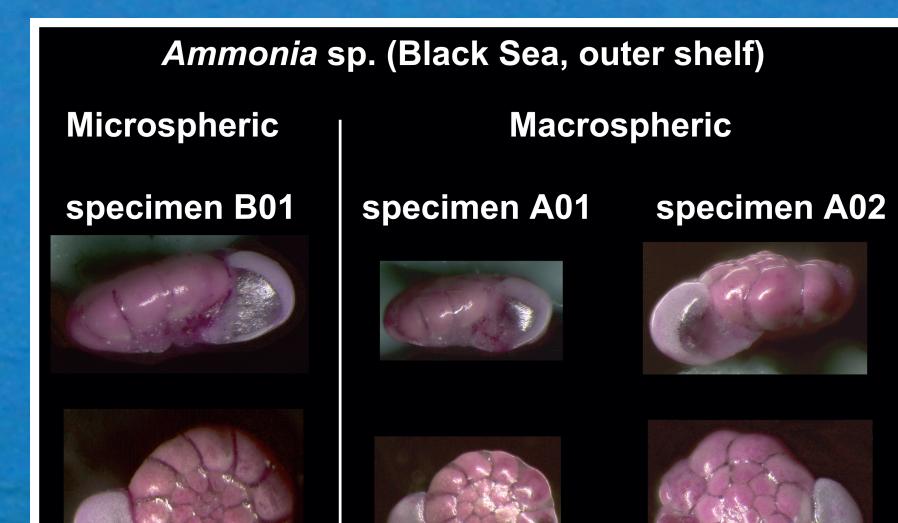


Mono-, Di-, or Trimorphism in Black Sea Ammonia sp.

Barbara Bassler & Alexander V. Altenbach, (abamail2000@yahoo.de), Palaeontology & Geobiology / GeoBio-Center LMU Munich



Paläontologie & Geobiologie LMU München

GeoBio-Center LMU München

THE QUESTION IS: what species is the Ammonia sp. recovered from the SW shelf off Crimea? We make use of 2625 biometric measures taken from this species for comparison with biometric measures and taxonomic definitions resulting from 35 typus descriptions, or morpho-groups, or molecular groupings, or broad sensulatu definitions for members of the genus Ammonia (Yanko 1990; Hayward et al. 2004; Leiter & Altenbach 2010).

OUR RESULTS: spiral ornamentation and umbilical bosses are inadequate for species separation, as well as the size of proloculi, as it spans one order of magnitude from microto macrospheres. The Black Sea Ammonia sp. is best defined by separating biometric measures for micro- and macrospheres. Otherwise a mishmash for separate features in A- and B-forms is derived, overprinting most specific pecularities. It needs a large number of individuals, and an even much larger number of biometric measures, to clearly separate distinct morphotypes. (Our species is near to Ammonia compacta sensu Yanko 1990, NOT Streblus compactus Hofker, 1964.)

500	μm

<u>number</u> of <u>chambers</u>	n	<u>proloculus</u> [µm]	<u>maximum test</u> <u>size</u> [µm]	<u>maximum test</u> <u>hight [µm]</u>	<u>number</u> of <u>whorls</u>
A - <u>forms</u>			macrosph	neres	
4 - 6	9	70 - 100	160 - 230	80 - 120	0.25 - 0.5
7 - 9	13	60 - 100	210 - 320	110 - 170	0.5 - 1
10 - 12	17	50 - 90	280 - 550	130 - 280	1 - 1.5
13 - 15	38	40 - 120	340 - 570	140 - 280	1.25 - 2
16 - 18	32	40 - 90	410 - 620	200 - 340	1.5 - 2.25
19 - 21	17	40 - 100	470 - 820	250 - 400	2 - 2.5
B - forms			microsph	neres	
16 - 18	2	20	210 - 580	90 - 280	2 - 2.5
19 - 21	3	20 - 30	540 - 610	250 - 270	2.25 - 2.5
22 - 24	1	30	580	310	2,5
25 - 27	4	10 - 20	500 - 800	220 - 370	2.75 - 3.25
28 - 30	2	20 - 30	800 - 830	280 - 370	3 - 3.75
31 - 33	2	20 - 30	750 - 910	330 - 430	3.25 - 3.5

1000				
			_	
	/			
		— •		
		-		
		▼		
27. 24	and the second second			
	Second Second			

number of chambers	n	proloculus [µm]	maximum test size [µm]	maximum test hight [µm]	number of whorls
A - <u>forms</u>			macrospl	neres	
13 - 15	2	50-60	230-250	150	1.5-1.75
16 - 18	7	40-60	250-310	130-210	1.5-1.75
19 - 21	3	50-60	300-360	150-190	1.75
22 -24	6	40-70	250-380	160-240	2-2.5
25 - 27	1	40	380	220	2.25
B - <u>forms</u>			microsph	eres	
28 - 30	1	10	380	220	2.75
31 - 33	1	10	300	170	3
34 - 36	1	10	400	190	3.5

Our biometric methodology in use is outlined here by comparison of *Ammonia* sp. Black Sea and A. beccarii sensu latu (Leiter & Altenbach 2010).

Assess Ammonia as a monomorph adult species (e.g. Hayward et al. 2004, and others)						
mixed	n	chambers	proloc	max. size	hight	whorls
Black Sea	76	13-32	10-100	210-910	90-430	1.75-3.75
Namibia	19	14-36	10-70	250-400	150-240	1.75-3.5

Better use micro- and macrospheres of all ages, guided by their bimodal proloculi distribution

A forms	n	chambers	proloc	max. size	hight	whorls
Black Sea	125	4-21	40-120	160-820	80-400	0-2.5
Namibia	19	14-27	40-70	230-380	130-240	1.5-2.5
B forms	n	chambers	proloc	max. size	hight	whorls
Black Sea	14	17-32	10-30	210-910	90-430	2-3.75

Namibia 3 300-400 170-230 2.75-3.5 29-36

Evidence for trimorphism appears at proloculi sizes near 35-45 µm in our Black Sea Ammonia sp. (But it needs an excess of >>100 individuals measured to illustrate).

Sources: Hayward, B.W., Holzmann, M., Grenfell, H., Pawlowski, J. and Triggs, C. 2004: Morphological distinction of molecular types in Am-monia - towards a taxonomic revision of the world's most commonly misidentified foraminifera. Marine Micropaleontology, 50: 237-271. Leiter, C. and Altenbach, A.V. 2010: Benthic Foraminifera from the diatomaceous mud-belt off Namibia: characteristic species for severe an-oxia. Palaeontologica Electronica, 13.2: 1-19. URL: http://www.micropress.org [Ellis & Messina Catalogue by the Micropaleontology Press, April 2014] Yanko, V.V. 1990: Chetvertichnie formaniniferi roda Ammonia v Ponto-Kaspiiskom regione [Quaternary foraminifera of genus Am-monia in the Pontic-Caspian Region]. Paleontologicheskii Zhurnal, 1:18-26. Acknowledgements: Thanks are due to FS Maria S. Merian and cruise leader Antje Boetius for offering samples from cruise 15-1 in frame of the international HYPOX-project. We are also thankful to the Bavarian States Collection, Munich, for sample access to modern and fossile Ammonia spp., and Mrs. Lydia Geißler for handling the media-equipment of the Geobiology and Palaeontology Section of the Dept. for Earth and Environment LMU and the Leibnitz-Rechenzentrum München/Germany.