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Introduction Discharge uncertainty
a) Brixton Deverill b) Ebbesbourne Wake C) Priors Farm d) Cools Cottage

The introduction of in-situ quasi-continuous monitoring of water quality provides the means to improve the characterisation of pollutant T r ) A e Subsets of data were
behaviour and gain new understanding of hydrological and biogeochemical processes occurring within catchments. However these data are s inter/spring | 7 Winter/Spring g | Winter df ] oty Winter 7| chosenwhere the
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not without uncertainties. To date studies have focused on examining uncertainties in nutrient data and how they impact on routinely used
metrics such as nutrient load estimation, uncertainties in flow data are largely ignored. In addition to this, having high temporal resolution
data is often considered the ‘truth’and used as a benchmark from which to assess other lower resolution data sets.
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A| M -1 analyse a suite of high temporal resolution data sets generated from in-situ sensor networks
within an uncertainty framework, including discharge and nutrient uncertainty, to provide robust
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estimates of nutrient fluxes from catchments impacted by intensive agricultural production practices. Stage m Stage m stge (m sage (m)
Figure 3: Stage-discharge uncertainty at each of the four field sites, where the blue dots are the observations, the red line the 1st order autoregressive model
result of the Loess regression fit and the black dashed lines represent 2 s.d. away from this fit. q, =oq, +Vl-a 2 W,

where q, is the error at time k, is a

g y Residuals were examined to determine their s.d. and the autocorrelation in the errors. A 1st-order autoregressive model was temporal autocorelation and W, is

Data: o Stage height and velocity were monitored at 15 min used to generate multiple set of errors accounting for the autocorrelation and heteroscadasticity of discharge uncertainty. random white noise at time k.

resolution at all sites and discharge calculated. F i e I d s ites . .
® Nitrate-N and TP were measured at 30 min (high) N Utrlent unce rta | nt ® Field sensor data were validated using paired

resolution using a field sensor (Nitratax and

. : a) N " b) S T e e i laboratory data, where the lab data was treated
Phosphax) at Brixton Deverill . MOy sensorys 2 o | i as the ‘truth’ (figure 4).
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Nitrate-N and TP at daily resolution |59 ISC,O River Wylye - Brixton Deverill River Sem - Priors Farm di o8 ® Residuals were found to be autocorrelated but
autosamplers followed by lab analysis at all sites. - 2o L= . N ~ eciduals ~ o7 Residuals homoscadastic, the errors were calculated using
MEthOdOlOgy: : £ sl - the 1st order autoregressive model accordingly.
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1. Uncertainty in flow was calculated using the relationship between 2 4l oo & 03] & 00| erTOrS Were detZrmined byyexamining repeated
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J J : : : : oo 01 lab standards (not shown).
- measurement uncertainty was determined using a stable period, Lo e T e,
usually winter/spring (figures 2 and 3). % N R 0 02 04 Lak?fp(mgi'i) 12 14 ® Lab errors were found to be heteroscadastic but

were assumed to be independent, errors were
modelled to include the heteroscadasticity.
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2. Uncertainty in the field sensor data was determined by comparing with
paired daily lab data.

Figure 4: Plots showing the relationship between paired sensor and lab data at Brixton Deverill and
River Sem - Cools Cottage the distribution of residuals for a) nitrate-N and b) total phosphorus.

3. Uncertainty in the lab data was calculated using repeated analysis of a :
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range of standard solutions. ® The modelled errors were applied T row | | | | | | P wm— » | . »
4. Statistics Of a” the errors were used iNn a 'Ist_order autoregressive Figure 1: Schematics of field sites on the River WYIYG at Brixton Deverill (BDHS), to e.aCh data setto prOdl.Jce 100 é; 2 7 j: h
model to generatel 100 iterations of the data sets including errors. River Ebble at Ebbesbourne Wake (EBAS) and River Sem at Priors Farm (PFAS) replicate data Set.s coyerlng the g . | l ) O o
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5.The replicate data sets were used to calculate nutrient loads (examples and nutrient data. e g I T TR e e T et o " | y
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oas | wider uncertainty bounds than the
2Ll serno £ o8 .| ' laboratory analysis. Figure 5: Time series of flow, nitrate-N and total phosphorus at a) Brixton Deverill and b) Priors farm, where green
0.7L ' 04 | shows 100 realisations of the time series following the error modelling and the blue shows the original data set.
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Figure 2: Stage-discharge curves split by season for a) Brixton Deverill, b) Ebbesbourne Wake, c) Priors Farm and d) Cools Cottage field sites. S 16197: i i " 028} i | S N : _ jzj : | | stage-discharge curve but using a velocity-area method for
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® Brixton Deverill shows a stable relationshio throuah winter and <bfing months relationship. Figure 6: Range of nutrient load estimates calculated from the 100 replicated data sets !t IS lmportan.t to mcIU(.ie both flow and “Ut".e“t uncertalntlfes
" IX,O e\(/je < duri q P ug he wh P dg N e Priors Farm and Cools Cottage data show that the relationship is dynamic with for a) Brixton Deverill and b) Priors Farm, comparing where both flow and nutrient in water quality analysis as both can play an important role in
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