EGU – BG2.5 2 May 2014

Jean-Christophe Calvet, Alina Barbu,
Dominique Carrer, David Fairbairn, Emiliano Gelati,
Catherine Meurey, Camille Szczypta, and JeanFrançois Mahfouf

Cross-validation of satellite products over France through their integration into a land surface model

Context

- Long (more than 30 years) time series of satellitederived land products over land are now available
 - Essential Climate Variable (ECV) products such as LAI, FAPAR, surface albedo, and soil moisture.
 - Produced by ESA, EUMETSAT, Copernicus
- Integration into land surface models
 - Validation of ECV products
 - Model verification
 - Reanalysis of land variables and fluxes

Objectives

- Consolidate the LDAS (Land Data Assimilation System) developed in the FP7 geoland2 project over France
 - Joint assimilation of vegetation variables and soil moisture observations
 - Interoperable with operational real-time applications
 - Weather forecast, Hydrology, Atmospheric inversions
- Monitor the quality of satellite-derived terrestrial ECVs
 - Key to the development of future climate services
 - Quality control the terrestrial products of the Copernicus Global Land service
 - Statistics on the assimilated observations
 - Soil moisture, LAI, FAPAR, surface albedo, surface temperature

SURFEX / ISBA-A-gs

- SURFEX modelling platform:
 - Shared by many meteorological services in Europe and North Africa
 - Used in CNRM-ARPEGE climate model (IPCC simulations)
 - Version 8 will be open-source (end 2014)
- ISBA-A-gs land surface model (within SURFEX)
 - Photosynthesis-driven phenology
 - No growing degree-days
 - All the atmospheric variables impact phenology (including atmospheric CO₂)
 - Interannual variability of LAImax is modelled
 - LAI is flexible and can be analyzed at a given time
 - FAPAR is modelled
 - Surface soil moisture is modelled

LDAS-France

FIG. 1 – Joint assimilation of LAI and surface soil moisture (8km x 8km)

LDAS-France

FIG. 2a – Accounting for sub-grid heterogeneity (8km x 8km)

LDAS-France

FIG. 2b – Accounting for sub-grid heterogeneity (8km x 8km)

One grid-cell near Toulouse:

Model / satellite product consistency check

FIG. 3 – Surface soil moisture (ESA-CCI microwave-derived product)

Correlations (1991-2008 day-to-day variability)

Szczypta et al. 2014, GMD

Model / satellite product consistency check

FIG. 4 – Leaf Area Index (GEOV1 Copernicus Global Land product)

Correlations (1991-2008 10-daily interannual variability)

Szczypta et al. 2014, GMD

FIG. 5 – LAI analysis (mean value for France)

FIG. 6 – Root-zone soil moisture analysis (mean value for France)

FIG. 7 – 10-daily GPP change rate in 2011 (extreme spring drought)

35

$$g CO_2 m^{-2} \times 10 days^{-1}$$

FIG. 8a - Increments

FIG. 8b - Increments

ET and drainage differences (mm/month)

Conclusions

LDAS-France is operational

- Cross-cutting validation reports are generated every 6 months for the Copernicus Global Land service
- Possible application for land reanalyses and drought monitoring

Ongoing activities

- Test the assimilation of FAPAR
- Multi-layer soil hydrology
- From EKF to EnKF
- Link to hydrology (NRT in situ river discharge observations)
- Go global (LDAS-Monde)

Acknowledgements

Thank you for your attention!

Contact:

jean-christophe.calvet@meteo.fr

Side result: FAPAR

Underestimation at wintertime (in relation to grassland LAI ?)

Side result: Surface Albedo

Simulations are driven by snow and LAI of crops

