GLOBAL MODELLING OF SURFACE AND INTERNAL TIDES

V. Lapin S. Griffiths

University of Leeds, U.K.

EGU, Vienna, 2014

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 1 / 27

SURFACE AND INTERNAL TIDES

THE LONG AND SHORT

Surface (barotropic) lunar M2 tide (m), generated from the TPXO, data-assimilative solution of Egbert et al.

SURFACE AND INTERNAL TIDES

THE LONG AND SHORT

Surface (barotropic) lunar M2 tide (m), generated from the TPXO, data-assimilative solution of Egbert et al.

Surface tide \rightleftharpoons Internal tide (N/m²)

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 2 / 27

- Long waves
- 1-layer SWE
- Easy to solve

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 3 / 27

Global modelling of ocean tides

Global modelling of ocean tides

M_2 DISSIPATION (W/m²)

FROM THE SATELLITE ALTIMETRY

TPXO8: 2.45 TW = 1.65 TW(shallow) + 0.8 TW(deep)

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 4 / 27

Aim

- A purely dynamical model (not data-constrained).
 - Multiscale: long (barotropic) and short (baroclinic) waves.
 - Computationally efficient and flexible (parametric studies).

AIM

- A purely dynamical model (not data-constrained).
 - Multiscale: long (barotropic) and short (baroclinic) waves.
 - Computationally efficient and flexible (parametric studies).

GLOBAL IT RESOLVING MODELS

- Multi-layer SW: Arbic et al. 2004; Simmons et al. 2004
- OGCMs: Arbic et al. 2010, 2012; Müller et al. 2012
 - Issues: resolution $> 1/12^{\circ}$ to get ITs; scalar approximations for SAL.

AIM

- A purely dynamical model (not data-constrained).
 - Multiscale: long (barotropic) and short (baroclinic) waves.
 - Computationally efficient and flexible (parametric studies).

GLOBAL IT RESOLVING MODELS

- Multi-layer SW: Arbic et al. 2004; Simmons et al. 2004
- OGCMs: Arbic et al. 2010, 2012; Müller et al. 2012
 - Issues: resolution $> 1/12^{\circ}$ to get ITs; scalar approximations for SAL.

AN ALTERNATIVE APPROACH

- Exploit near-linearity of both surface and internal tides.
- Modal decomposition in z for arbitrary topography: $3D \rightarrow 2D$.
- \bullet Frequency domain: long runs of time-stepping \rightarrow matrix inversions.

LINEAR BOUSSINESQ EQUATIONS

MODAL DECOMPOSITION

BOUSSINESQ EQUATIONS AND B.C.

$$\frac{\partial \mathbf{u}}{\partial t} + f \mathbf{e}_{\mathbf{z}} \times \mathbf{u} = -\frac{\nabla p}{\rho_0} + \mathbf{F}, \quad \frac{\partial p}{\partial z} = -\rho g, \quad \nabla \cdot \mathbf{u} + \frac{\partial w}{\partial z} = 0, \quad \frac{\partial \rho}{\partial t} - \frac{\rho_0 N^2}{g} w = 0,$$
$$w = \mathbf{u} \cdot \nabla h \quad \text{at} \quad z = -H(\mathbf{x}); \quad w = \frac{\partial \zeta}{\partial t}, \quad p = \rho_0 g \zeta \quad \text{at} \quad z = 0.$$

V. Lapin, S. Griffiths (Leeds)

EGU2014 6 / 27

LINEAR BOUSSINESQ EQUATIONS

MODAL DECOMPOSITION

BOUSSINESQ EQUATIONS AND B.C.

$$\frac{\partial \mathbf{u}}{\partial t} + f \mathbf{e}_{\mathbf{z}} \times \mathbf{u} = -\frac{\nabla p}{\rho_0} + \mathbf{F}, \quad \frac{\partial p}{\partial z} = -\rho g, \quad \nabla \cdot \mathbf{u} + \frac{\partial w}{\partial z} = 0, \quad \frac{\partial \rho}{\partial t} - \frac{\rho_0 N^2}{g} w = 0,$$
$$w = \mathbf{u} \cdot \nabla h \quad \text{at} \quad z = -H(\mathbf{x}); \quad w = \frac{\partial \zeta}{\partial t}, \quad p = \rho_0 g \zeta \quad \text{at} \quad z = 0.$$

VERTICAL MODES

$$\left(\frac{Z'}{N^2}\right)' + \frac{Z}{c_n^2} = 0, \quad Z'(-H) = 0, \quad N^2(0)Z(0) + gZ'(0) = 0$$

- Single barotropic mode: $c_0 \approx \sqrt{gH}$
- Infinite set of internal modes: $c_n \approx \bar{N}H/\pi n, n \geq 1$
- Modal expansion: $\psi = \sum_{n=0}^{\infty} \psi_m(\mathbf{x}) Z_m(z, H(\mathbf{x}))$.

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 6 / 27

MODAL SHALLOW WATER EQUATIONS

(CF. GRIFFITHS & GRIMSHAW, JPO 2007)

BAROTROPIC MODE:

$$\frac{\partial \boldsymbol{u_0}}{\partial t} + \boldsymbol{f} \times \boldsymbol{u_0} = -\nabla (P_0 - g\zeta_{eq} - g\zeta_{sal}) - \frac{\boldsymbol{D}_{BL} + \boldsymbol{D}_{IT}}{\rho H},$$
$$\frac{1}{g} \frac{\partial P_0}{\partial t} + \nabla \cdot (H\boldsymbol{u_0}) = 0, \quad \boldsymbol{D}_{IT} = -\rho \nabla H \sum_n P_n.$$

MODAL SHALLOW WATER EQUATIONS

(CF. GRIFFITHS & GRIMSHAW, JPO 2007)

BAROTROPIC MODE:

$$\frac{\partial \boldsymbol{u_0}}{\partial t} + \boldsymbol{f} \times \boldsymbol{u_0} = -\nabla (P_0 - g\zeta_{eq} - g\zeta_{sal}) - \frac{\boldsymbol{D}_{BL} + \boldsymbol{D}_{IT}}{\rho H},$$
$$\frac{1}{g} \frac{\partial P_0}{\partial t} + \nabla \cdot (H\boldsymbol{u_0}) = 0, \quad \boldsymbol{D}_{IT} = -\rho \nabla H \sum_n P_n.$$

INTERNAL MODES:

$$\frac{\partial \boldsymbol{u}_m}{\partial t} + \boldsymbol{f} \times \boldsymbol{u}_m = -\nabla P_m - \nabla H \sum_n I_{mn} P_n,$$
$$\frac{\partial P_m}{\partial t} + \nabla \cdot \left(c_m^2 \boldsymbol{u}_m \right) = -(c_m^2)' \boldsymbol{u}_0 \cdot \nabla H - \nabla H \cdot \sum_n I_{mn} c_n^2 \boldsymbol{u}_n.$$

Here, c_m and $I_{mn}(c_m,c_n)$ are horizontally varying.

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 7 / 27

MODAL SHALLOW WATER EQUATIONS

(CF. GRIFFITHS & GRIMSHAW, JPO 2007)

BAROTROPIC MODE:

$$\frac{\partial \boldsymbol{u_0}}{\partial t} + \boldsymbol{f} \times \boldsymbol{u_0} = -\nabla (P_0 - g\zeta_{eq} - g\zeta_{sal}) - \frac{\boldsymbol{D}_{BL} + \boldsymbol{D}_{IT}}{\rho H},$$
$$\frac{1}{g} \frac{\partial P_0}{\partial t} + \nabla \cdot (H\boldsymbol{u_0}) = 0, \quad \boldsymbol{D}_{IT} = -\rho \nabla H \sum_n P_n.$$

INTERNAL MODES:

$$\frac{\partial \boldsymbol{u}_m}{\partial t} + \boldsymbol{f} \times \boldsymbol{u}_m = -\nabla P_m$$
$$\frac{\partial P_m}{\partial t} + \nabla \cdot \left(c_m^2 \boldsymbol{u}_m\right) = -(c_m^2)' u_0 \cdot \nabla P_m$$

Here, c_m and $I_{mn}(c_m, c_n)$ are horizontally varying.

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 7 / 27

INTERNAL MODES

EGU2014 8 / 27

INTERNAL MODES

V. Lapin, S. Griffiths (Leeds)

• ITs are notoriously sensitive to topographic slopes via

$$\varepsilon = rac{|
abla H|}{lpha}, \quad lpha = \left(rac{\omega^2 - f^2}{N^2 - \omega^2}
ight)^{1/2}$$

- But most of the energy flux is in low modes for large-scale topo.
- We truncate to 2-4 modes.

NUMERICAL APPROACH

GLOBAL TIDAL MODELLING

SPECTRAL APPROACH

$$\boldsymbol{u}_{m} = \operatorname{Re}(\sum_{j} \hat{\boldsymbol{u}}_{m}^{(j)} \exp\left(-\mathrm{i}\omega_{j} \mathrm{t}\right)) \text{ and } \boldsymbol{P}_{m} = \operatorname{Re}(\sum_{j} \hat{\boldsymbol{P}}_{m}^{(j)} \exp\left(-\mathrm{i}\omega_{j} \mathrm{t}\right))$$

NUMERICAL APPROACH

GLOBAL TIDAL MODELLING

SPECTRAL APPROACH

$$\boldsymbol{u}_{m} = \operatorname{Re}(\sum_{j} \hat{\boldsymbol{u}}_{m}^{(j)} \exp\left(-\mathrm{i}\omega_{j}\mathrm{t}\right)) \text{ and } \boldsymbol{P}_{m} = \operatorname{Re}(\sum_{j} \hat{\boldsymbol{P}}_{m}^{(j)} \exp\left(-\mathrm{i}\omega_{j}\mathrm{t}\right))$$

BAROTROPIC MODE:

- Solve iteratively and average at each step.
- Projection for non-linear terms (e.g. \hat{D}_{BL}).

NUMERICAL APPROACH

GLOBAL TIDAL MODELLING

SPECTRAL APPROACH

$$\boldsymbol{u}_{m} = \operatorname{Re}(\sum_{j} \hat{\boldsymbol{u}}_{m}^{(j)} \exp\left(-\mathrm{i}\omega_{j}\mathrm{t}\right)) \text{ and } \boldsymbol{P}_{m} = \operatorname{Re}(\sum_{j} \hat{\boldsymbol{P}}_{m}^{(j)} \exp\left(-\mathrm{i}\omega_{j}\mathrm{t}\right))$$

BAROTROPIC MODE:

- Solve iteratively and average at each step.
- Projection for non-linear terms (e.g. \hat{D}_{BL}).

INTERNAL MODES:

- Calculate $N(\mathbf{x}, z)$ from WOA09 and then $c_m(\mathbf{x}, H(\mathbf{x}))$.
- Split topo into resolved and unresolved
 - large-scale topo \rightarrow model explicitly (most conversion into low modes);
 - small-scale rough topo \rightarrow parameterized IT wave drag.

• Add sponge layers (nonlinear wave breaking in shallow regions).

V. Lapin, S. Griffiths (Leeds)

EGU2014 9 / 27

FD SCHEME AND CONVERGENCE

DISCRETIZATION

- 2nd-order energy-conserving FD (Arakawa C-grid).
- Lat-lon grid with a rotated pole.
- Resolution up to $1/30^{\circ}$.

FD SCHEME AND CONVERGENCE

DISCRETIZATION

- 2nd-order energy-conserving FD (Arakawa C-grid).
- Lat-lon grid with a rotated pole.
- Resolution up to $1/30^{\circ}$.

Converging solution M_2

 K₁: Numerical issues with coastally trapped IT

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 10 / 27

RESULTS: M₂ AMPLITUDE AND PHASE

Model

Data (TPXO7.2)

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 11 / 27

$M_2 \ GLOBAL \ INTERNAL \ TIDES$ bottom pressure, N/m^2

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 12 / 27

LUZON STRAIGHT: MODES 1, 2 AND 3 bottom pressure, N/m^2

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 13 / 27

M_2 : BAROCLINIC CONVERSION (mW/m²)

M+P: 1.1 TW = (0.3+0.3) TW (open) + (0.1+0.4) TW (coastal)
TPXO: 1 TW = 0.75 TW (open) + 0.25 TW (coastal)

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 14 / 27

- A purely dynamical model (no data assimilation).
 - Surface and internal tides are modelled with quasi-linear SWEs.
 - Works in frequency domain. Fast: 12h/constituent on 1/25° grid.
 - Showed results for M2. Other constituents (K_1) also modelled.

Good for

- high-res present day maps for the internal tides;
- paleotides (e.g. in the last glacial maximum);
- simulate the tidal evolution of the Earth-Moon system?

Not so good for

- present-day global maps of tides (data-constrained models are better);
- modelling of shelf tides (nonlinear and non-tidal interactions).

LIMITATIONS & FUTURE WORK

- IT model: ↑ resolution will give more resolved IT conversion and ↓ parametrized IT drag
 - subdomain decomposition + parallelization
 - more baroclinic modes, mode coupling....
- FD scheme: grid points are clustered at high lats, no local refinement.
 - Move to FE? (cf. Lyard et al., 2006)
- **Sparse solver**: direct sparse solvers (PARDISO, UMFPACK) are used but iterative methods are desirable.
- Nonlinearities: advection can be added to the iterative scheme.

Res	DBL, TW	DIT, TW	D, TW	KE, PJ	PE, PJ	RMS
1/10	1.695	1.308	2.998	236.8	204.3	0.093
2/25	1.689	1.305	2.986	237.5	204.8	0.096
1/15	1.616	1.350	2.958	231.3	198.8	0.092
1/20	1.829	1.177	2.997	250.0	215.7	0.100
1/25	1.958	1.068	3.026	262.8	227.3	0.105

Res	M1, TW	M2, TW	M3, TW	DITM, TW	DITP, TW
1/10	0.146	0.017	0.000	0.163	1.145
2/25	0.175	0.039	0.000	0.214	1.092
1/15	0.179	0.059	0.008	0.246	1.105
1/20	0.215	0.092	0.027	0.333	0.843
1/25	0.253	0.110	0.044	0.407	0.661

DISCRETIZATION

For each tidal constituent write $m{\hat{a}} = \left(m{\hat{U}}^{(j)}, m{\hat{V}}^{(j)}, m{\hat{\zeta}}^{(j)}
ight)$, giving

$$(\mathbf{L} - \mathrm{i}\omega_{j}\mathbf{I})\hat{a} = \hat{\mathbf{b}} + \hat{\mathbf{s}}(\hat{a}) - \hat{\mathbf{d}}(\hat{a})$$

•
$$\mathbf{L} = \begin{pmatrix} 0 & -f & \frac{g}{r_e \cos \theta} \frac{\partial}{\partial \varphi} \\ f & 0 & \frac{g}{r_e \cos \theta} \frac{\partial}{\partial \varphi} \\ \frac{1}{r_e \cos \theta} \frac{\partial}{\partial \varphi} H & \frac{1}{r_e \cos \theta} \frac{\partial}{\partial \theta} \cos \theta H & 0 \end{pmatrix} - \text{ the linear dynamics;}$$

•
$$\hat{\mathbf{b}} - \text{ forcing; } \hat{\mathbf{s}} - \text{ self-attraction; } \hat{\mathbf{d}} - \text{ nonlinear friction.}$$

Solve iteratively, averaging at each time step $\hat{a}_{n+1}
ightarrow 0.5 (\hat{a}_{n+1} + \hat{a}_n)$

$$\left(\mathbf{L}-\mathrm{i}\omega_{j}\mathbf{I}-\mathbf{\hat{S}}_{n}+\mathbf{\hat{D}}_{n}\right)\mathbf{\hat{a}}_{n+1} = \mathbf{\hat{b}}+\left[\mathbf{\hat{s}}(\mathbf{\hat{a}}_{n})-\mathbf{\hat{S}}_{n}\mathbf{\hat{a}}_{n}\right]-\left[\mathbf{\hat{d}}(\mathbf{\hat{a}}_{n})-\mathbf{\hat{D}}_{n}\mathbf{\hat{a}}_{n}\right]$$

 $\hat{\mathbf{S}}$ and $\hat{\mathbf{D}}$ – sparse approximations to self-attraction and nonlinear drag.

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 18 / 27

SENSITIVITY PROBLEM:

• IT generation is notoriously sensitive to topographic slopes via

• criticality parameter
$$\varepsilon = rac{|\nabla H|}{lpha}, \quad lpha = \left(rac{\omega^2 - f^2}{N^2 - \omega^2}
ight)^{1/2}.$$

SENSITIVITY PROBLEM:

• IT generation is notoriously sensitive to topographic slopes via

• criticality parameter
$$arepsilon = rac{|
abla H|}{lpha}, \quad lpha = \left(rac{\omega^2 - f^2}{N^2 - \omega^2}
ight)^{1/2}.$$

Splitting topography

Split topo into resolved and unresolved

- Large-scale topo → model explicitly (most conversion into low modes)
- Small-scale rough topo \rightarrow parameterized IT wave drag
- "Global" or "local" filters:
 - SH truncation or Savitzky-Golay filter.

M₂: BAROCLINIC CONVERSION (mW/m^2) Dynamical and parameterized

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 20 / 27

) (c)

K₁: IT BOTTOM PRESSURE (N/m^2) modes 1 and 2

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 21 / 27

K₁: BAROCLINIC CONVERSION (mW/m^2)

I.T. MODEL: 0.04 TW = 0.02 TW (open ocean) + 0.02 TW (coastal)
TPXO: 0.1TW = 0.05 TW (open ocean) + 0.05 TW (coastal)

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 22 / 27

SUBDOMAIN DECOMPOSITION APPROACH

Solve in parallel on 100 cores

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 23 / 27

OTHER GENERATION MECHANISM

Fig. 7. A solar view of physical processes affecting internal waves. "As a challenge, the reader is left to decipher the symbols himself" (THORPE, 1975)

V. Lapin, S. Griffiths (Leeds) Global modelling of ocean tides EGU2014 24 / 27

OBSERVED TIDES

Tidal amplitudes (m), generated from the TPXO7.2

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 25 / 27

SIMPLE BAROTROPIC TIDE MODEL

OUR NUMERICAL APPROACH

Linear single-layer SWE for is the depth perturbation $\zeta = \zeta_o - \zeta_e$ and volume transprt $U = (H + \zeta)u$:

$$egin{aligned} &rac{\partial oldsymbol{U}}{\partial t}+oldsymbol{f} imesoldsymbol{U}&=-gH
abla(\zeta-\zeta_{eq}-\zeta_{sal})-
ho_0^{-1}\left(oldsymbol{D}_{BL}+oldsymbol{D}_{IT}
ight),\ &rac{\partial \zeta}{\partial t}+
abla\cdotoldsymbol{U}&=0. \end{aligned}$$

 ζ_{eq} is the equilibrium tide representing astronomical forcing; ζ_{sal} is the self-attraction and loading potential; ρ_0 – averaged density; f – the Coriolis parameter.

SIMPLE BAROTROPIC TIDE MODEL

OUR NUMERICAL APPROACH

Linear single-layer SWE for is the depth perturbation $\zeta = \zeta_o - \zeta_e$ and volume transprt $U = (H + \zeta)u$:

$$egin{aligned} &rac{\partial m{U}}{\partial t} + m{f} imes m{U} &= -gH
abla (m{\zeta} - m{\zeta}_{eq} - m{\zeta}_{sal}) - m{
ho}_0^{-1} \left(m{D}_{BL} + m{D}_{IT}
ight), \ &rac{\partial m{\zeta}}{\partial t} +
abla \cdot m{U} &= 0. \end{aligned}$$

 ζ_{eq} is the equilibrium tide representing astronomical forcing; ζ_{sal} is the self-attraction and loading potential; ρ_0 – averaged density; f – the Coriolis parameter.

PARAMETERIZED IT DRAG

$$oldsymbol{d}_{IT} = rac{
ho_0 N_B^2}{3\omega} oldsymbol{(u} \cdot
abla Hig)
abla H imes igg\{ egin{array}{cc} 1, & & |f| < \omega, \ 0, & & |f| \geq \omega, \end{array}
ight.$$

where N_B is the buoyancy frequency at the bottom.

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 26 / 27

Resolution Convergence

M2 energy (J)

DISSIPATION

	$\boldsymbol{D}_{BL}(\mathrm{TW})$	$\boldsymbol{D}_{IT}(\mathrm{TW})$	$D(\mathrm{TW})$
M2 model	~ 1.35	~ 1.4	~ 2.75
M2 obs	< 1.65	> 0.8	~ 2.45
K1 model	~ 0.2	~ 0.14	~ 0.34
K1 obs	< 0.3	> 0.04	~ 0.34

V. Lapin, S. Griffiths (Leeds)

Global modelling of ocean tides

EGU2014 27 / 27