

Ocean feedback to tropical cyclone intensity

in a multidecadal coupled simulation of the South Pacific

Swen Jullien,

P. Marchesiello, C. Menkes, J. Lefèvre, N. Jourdain, G. Samson, M. Lengaigne

Contact: swen.jullien@locean-ipsl.upmc.fr

Introduction: TC forecast errors

TRACK

INTENSITY

 (\mathbf{i})

CC

✓ Track forecast improved✓ Intensity forecast did not improve:

- Ocean feedback?
- TC intensification models?

Introduction: TC thermodynamic model

✓ Maximum Potential Intensity:

$$V_m^{2} = \frac{C_H}{C_D} \frac{T_S - T_O}{T_O} (H_S^* - H_A)$$

Introduction: ocean response

 (\mathbf{i})

BY

CC

Jullien et al., 2012, JPO Vincent et al., 2012, JGR

Introduction: ocean feedback

P_{MPI}

 \checkmark Sensitivity of cyclone intensity to a local SST reduction under its eyewall can be calculated (Schade, 2000, Holland, 1997):

 (\mathbf{i})

(cc)

$$\frac{\partial P_C}{\partial SST_C} = \frac{\Delta P_{MPI}}{\Delta SST_{max}} = f\left(SST_A, RH_A, T_O\right)$$

TC pressure of max potential intensity ΔSST_{max} maximum possible SST cooling.

 \Rightarrow Linear relation to cooling given by ambient conditions

Schade (2000)	21-45 hPa/°C	Theory
Bender and Ginis (1993,2000)	2-13 hPa/°C	Event/idealized studies from coupled models

ROMS-WRF coupled model

NCEP2 reanalyzes forcing 1979-1999

Twin coupled/forced experiments

TC-induced cold wake removed

Forced atmospheric simulation has no feedback from the TC cold wake but everything else is the same.

Feedback on TC intensity

 (\mathbf{i})

Too many moderate-to-strong cyclones in the forced model

Intensity sensitivity to cooling

TC intensity sensitivity is:

- ✓ strongly nonlinear: high for strong cooling only
- much lower than predicted by theory and comparable to model test cases

Schade (2000)	21-45 hPa/°C	Theory
Bender and Ginis (1993,2000)	2-13 hPa/°C	Event/idealized studies
Jullien et al. (2014)	0-15 hPa/°C	Realistic TC distribution

Cooling sensitivity to ocean structure

 (\mathbf{i})

Mesoscale activity modifies the ocean response by up to 50%:

- ✓ Anticyclonic eddies damp SST cooling
- ✓ Cyclonic eddies enhance SST cooling

Cooling sensitivity to ocean structure

Barrier layer (m) 5°S 10⁰S Warm Pool Coral Sea 15[°]S $\hat{\mathbf{v}}_{\mathbf{a}}$ \mathcal{O}^{I} 20°S \swarrow $25^{\circ}S$ 150°E 160[°]E 170°E 180⁰W 170^oW

 (\mathbf{i})

Large-scale ocean stratification strongly modulates the cooling:

- ✓ Coral sea: shallow MLD => strong cooling
- ✓ Warm pool: deep MLD and thick BL => weak cooling

Intensity sensitivity to cooling

TC intensity sensitivity is:

- ✓ strongly nonlinear: high for strong cooling only
- much lower than predicted by theory and comparable to model test cases

Schade (2000)	21-45 hPa/°C	Theory
Bender and Ginis (1993,2000)	2-13 hPa/°C	Event/idealized studies
Jullien et al. (2014)	0-15 hPa/°C	Realistic TC distribution

Intensification process

✓ TC intensity is limited in the coupled simulation

- ✓ LH flux starts decreasing 2 days before TC intensity
- ✓ Humidity is well correlated with TC intensity => humidity convergence

Intensification process

 $\overline{\mathbf{i}}$

BY

CC

Intensification process

 $\overline{\mathbf{i}}$

BY

CC

On the paradigms of intensification

Thermodynamic mechanism at fault (see also Montgomery et al., 2009)
The effect of SST is not instantaneous but accumulated over time

On the paradigms of intensification

Thermodynamic mechanism at fault (see also Montgomery et al., 2009)
The effect of SST is not instantaneous but accumulated over time

On the paradigms of intensification

Thermodynamic mechanism at fault (see also Montgomery et al., 2009)
The effect of SST is not instantaneous but accumulated over time

✓Role of macro-scale processes and the secondary circulation (Smith et al., 2009) => revisit the cooperative WISHE/CISK theory

Summary & perspectives

- ✓ SST cooling is strongly nonlinear and modulated by the oceanic structure (forecasting issue)
- ✓ Feedback is weaker in realistic simulations than in the thermodynamic theory
- ✓ Role of macro-scale advection that controls the input of heat and angular momentum in the inner-core region past the early intensification phase (after 2 days)
- ✓ What about:
 - ✓ intra-eyewall dynamics?
 - ✓ role of vortex-vortex interactions (forecasting issue)?

<u>Ref</u>: Jullien et al., 2014 Clim. Dyn. doi:10.1007/s00382-014-2096-6