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Preliminary notes

Theoretical basis and analytical illustration

Application of the proposed approach to assess
predictability of moisture content of frozen soil

o Dynamic-stochastic modeling hydrothermal
regime of soil column

o Is the process of frozen moisture dynamics stable?
Sensitivity to initial conditions

o Assessing predictability and its sensitivity to
changes of soil properties and climatic conditions

Conclusions @Ol




To develop a conceptual approach to answer the
questions:

What are the predictability limits of different water cycle
components and what metrics can be used to quantify it?

How to identify predictable and unpredictable patterns?
What are the physical mechanisms controlling predictability?

How to evaluate the quality of the hydrological models by
dividing inherent and model-related predictability limits?
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dynamical systems subjected to the effect of noise
(stochastic-dynamical system) provides possible
way to such conceptualization

Objective

To propose a method for assessing potential
predictability through a procedure of
convergence of the system state
probabilistic measure to its stable value (if
the latter exists) o
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In process of time, probability function will be converge to an invariant measurep

and information on the initial state will be lost

The time of the convergence, i.e. the time interval during which the system losses

memory about its initial state, defines limit of the potential predictability of the

system.

Dymnikov, V. P. (2007) Stability and predictability of macro-scale atmospheric

processes (in Russian)
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Rate of convergence depends on the dissipation

parameter ]! and does not depend on the variance of

forcing process
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ny: |mechan|sms controlllngthe predictability can be
studled by numerical dynamic-stochastic modeling of the
processes
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A STATISTICAL DYNAMIC PROCESS

Schematic of a dynamic-stochastic model
(from P.S. Eagleson “Climate, Soil and Vegetation:
Introduction to Water Balance Dynamics”) @ ©
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Gelfan A.N. (2010) Extreme snowmelt floods: frequency assessment and
analysis of genesis on the basis of the dynamic-stochastic approach. J.
Hydrology, 388, 85-99

Gelfan A. N. (2006) Physically based model of heat and water transfer in fr,

soil and its parametrization by basic soil data. IAHS Publ., 303, pp. 293-30&0?1




the upper part of the Devitsa River basin draining east into the Don River.
Relief is flat and the dominant soils are chernozems with some podzol.
The bottom water-bearing horizon of 25-30 m depth is the main aquifer
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Hydrometric site
Meteorological station
Rain gauge
Recording rain gauge

. Snow coarse survey
Sail lysimeter plot
Pan evaporation plot
Snow evaporation plot
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1latedand measured profiles of soil tempera owmelt period; spring
‘of 1981 1.)
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emble of thousand 4-month meteorological scenarios
is Monte-Carlo generated and used as input into the
deterministic model. Output is the ensemble of 1000
trajectories of soil moisture characteristics (water content of

i c)
-soil column, moisture of different soil layers)
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'eteorological scenarios (W,=W(z,0)=0.15)
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n approach to assessing potential predictability through a
procedure of convergence of the system state probabilistic
measure (variance) to its stable value has been proposed
and applied to moisture content of frozen soil

Numerical experiments with the dynamic-stochastic model
of hydrothermal regime of frozen soil has been shown that
in the steppe physiographic conditions:

osoil moisture dynamics are slightly sensitive to perturbation of the
initial soil water content and temperature

opredictability of soil moisture increases with increasing thickness of
soil layer and depth of the layer

opredictability of soil moisture decreases when soil texture is becoming
more coarser

opredictabaility is much more sensitive to changes of soil properties
than to climatic changes of mean seasonal air temperature and
precipitation
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Title of the Working Group
Physics of Hydrological Predictability
Abstract of the proposed research activity

The main objective of the Working Group (WG) is to
advance our understanding interconnection of
predictability aspects of hydrological, weather and
climate components of the Earth System.

WG science questions include:
1. What are the predictability limits of different
water cycle processes and what metrics can be
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