

Satellite-based Global Storm Tracking, Climatology, and Life Cycle Evolution

Rebekah Esmaili^{1,2} Yudong Tian^{1,4} Daniel Vila³

MOTIVATION

- Lagrangian storm tracking and life cycle of storms on the globe helps
- Study whole evolution of storm
- Determine transport of moisture
- Learn how individual storms form and decay
- Goal: develop a comprehensive global picture of storm tracks, types, characteristics, and life cycles using satellite measurements
- Applications
- Improve meteorological forecasts
- Quantify individual storm water cycle contributions
- Assess/validate current and future satellite missions

DATA AND METHODS June 28, 2012 Figure 1 - IR dataset NCEP-CPC 4km Cloud Top Temperature • 30 min brightness temp. • GOES, METOSAT, GMS • Interpolation used to fill in satellite coverage gaps • Examined DJF 2001-2011 Figure 2 - Cloud clusters using ForTraCC tracking technique (Vila et. al, 2008) Capture thresholds: • Temperature < 245 K • Area > 100 pixels

Figure 3 - Tracking storms with 8-hour lifetime DJF 2001-2011

- Detection by area overlap, both forward and backward in time
- Centroid of cloud cluster followed to determine storm tracks
- Storm tracks (fig. 3) outline features consistent with DJF:
- Midlatitude storm tracks across North America
- Intertropical Convergence Zone (ITCZ) close to equator

RESULTS

What is the global distribution of storms?

Figure 4 - Storm initiation frequency, binned by 0.5x0.5 degrees DJF 2001-11

What are the temperature and size properties?

Figure 5 - Regional and seasonal storm properties

RESULTS - LIFE CYCLE EVOLUTION

How frequent are short and long lived storms?

Figure 6 - Count of storm lifetimes

- Majority of storms live < 3 hours
- High resolution data needed to track storms

How do storms evolve over their lifetime?

Figure 7 - Regional life cycles: ave. size evolution by lifetime Summer: JJA (North) and DJF (South). Winter: DJF (North) and JJA (South).

• Evolution non-linear; varies by season, location, and storm classes

CONCLUSIONS

- Lagrangian analysis coupled with satellite IR yield global analysis
- Storm initiation higher over convergence zones, rainforest, Pacific islands
- Short lived storms more frequent, warmer, and smaller than longer lived
- Lifecycle shows regularity can potentially develop model to estimate life cycle duration

REFERENCES AND AFFILIATIONS

- Vila, D. A., Machado, L. A. T., Laurent, H. and Velasco, I., 2008: Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) Using Satellite Infrared Imagery: Methodology and Validation. Weather and Forecasting 23, 233-245.
- Machado, L.A.T., Rossow, W.B., Guedes, R.L., Walker, A.W., 1998. Life Cycle Variations of Mesoscale Convective Systems over the Americas. Monthly Weather Review 126, 1630-1654.
- Houze, R.A., 1993. Cloud Dynamics. Academic Press, San Diego.

- . Dept. of Atmospheric and Oceanic Science, University of Maryland, College Park MD
- 2. Earth System Science Interdisciplinary Center, University of Maryland, College Park MD
- 3. INPE/CPTEC, Sao Jose dos Campos, Brazil
- 4. NASA Goddard Space Flight Ctr., Hydrological Science Lab, Greenbelt MD

*Data will be available soon: http://stormtracks.umd.edu