Applying Kalman filtering to investigate tropospheric effects in VLBI

Benedikt Soja, T. Nilsson, M. Karbon, R. Heinkelmann, L. Liu, C. Lu, J. A. Mora-Diaz, V. Raposo-Pulido, M. Xu, and H. Schuh

benedikt.soja@gfz-potsdam.de

Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences

EGU 2014, Vienna May 2nd, 2014

Overview: VLBI & troposphere

- VLBI important for EOP, TRF scale, CRF
- Precise determination of tropospheric delays

$$\tau_{tropo} = \tau_h^{z} \cdot mf_h(e) + \tau_w^{z} \cdot mf_w(e)$$

- Zenith hydrostatic delays: from pressure at sites
- Zenith wet delays: normally parameterized as piecewise linear functions and estimated by least squares method (LSM)
- Horizontal gradients for azimuthal variations

GF7

POTSDAA

Motivation for Kalman filtering

- Capable of real-time analysis of continuous observations
 - VLBI Global Observing System (VGOS): e-VLBI, observations 24/7
- Efficient handling of large number of observations
 - VGOS: increase in number of observations by 1-2 orders of magnitude
- Ease of including different data sets in the estimation
 - GGOS: combination of space-geodetic techniques
- Stochastic modeling (focus of this presentation)

Kalman filter overview

• Extended Kalman filter

PredictionCorrection $\tilde{x}_k = F_k x_{k-1} + w_k$ $x_k = \tilde{x}_k + K_k (z_k - H_k \tilde{x}_k)$ $\tilde{P}_k = F_k P_{k-1} F_k^T + Q_k$ $P_k = (I - K_k H_k) \tilde{P}_k$ $K_k = \tilde{P}_k H_k^T (H_k \tilde{P}_k H_k^T + R_k)^{-1}$

- Forward + backward + smoothing
- Extension of the GFZ version of VieVS (Böhm et al., 2012)
- FWF project VLBI Analysis in Real-Time

Kalman filter solution

• Estimating

- Station coordinates (NNT+NNR constraints)
- ERP: x pole, y pole, UT1
- Clock + clock rate
- ZWD + gradients
- IERS Conventions 2010

- Precession/nutation and radio source positions fixed (so far)
 - ERP results presented by M. Karbon (session G2.2, poster)
- Stochastic modeling for all parameters: random walk
- ZWD process noise
 - Herring, 1990: PSD = 58 cm²/d
 - Schüler, 2001: PSD = 6 cm²/d

VLBI data: CONT11

- CONT sessions: 15 days of continuous observations
- Large network of 10+ stations
 - R1/R4: 6-10 stations
- High data rate (512 Mbps)
 - R1/R4: 256 Mbps
- Highest quality of geodetic results
- Coordinated by the IVS
- CONT11 from Sept 15-29, 2011
- 14 stations

GF7

Helmholtz Centre

POTSDAM

- ~1100 scans per day
- ~9000 observations per day

6

ZWD from KF and LSM

- Day 5 of CONT11
- KF: $PSD_{ZWD} = 58 \text{ cm}^2/\text{d}$
- LSM: 20 min intervals
- RMS
 - LSM interpolated to KF epochs
 - Maximum: 7.4 mm (Fortaleza)
 - Average: 3.7 mm
- Difference of mean ZWDs
 - Maximum: 1.7 mm (Zelenchukskaya)
 - Average: 1.0 mm

ZWD from KF and LSM

• ZWDs for Onsala during complete CONT11 (left), excerpt (right)

ZWD a posteriori standard deviations

- From KF and LSM covariance matrices
- Averaged over CONT11
- Smallest σ_{ZWD} for Kalman filter using PSD_{ZWD} = 6 cm²/d

σ _{zwp} [mm]	Onsala	Tsukuba
LSM	3.0	2.4
KF (58 cm ² /d)	3.8	3.3
KF (6 cm ² /d)	2.0	1.7

9

Baseline length repeatabilities

- LSM: station coordinates estimates once per day
- KF: random walk with PSD = 1 cm²/d
 - for comparison with LSM: averaged over 1 day

External data during CONT11

- Water Vapor Radiometers at stations Onsala and Tsukuba
 - Onsala: ~7 s resolution
 - Tsukuba: ~50 s resolution, gaps _
 - Data not used when liquid water > 0.7 mm

IVS 1999 Annual Report

IVS 2005 Annual Report

- Ray-traced delays using the NCEP numerical weather models
 - 6 h resolution
 - Zus et al., 2014

Comparison to external data

• ZWD comparisons for Onsala (left) and Tsukuba (right)

Differences w.r.t. WVR

• ZWDs interpolated to epochs of WVR data

RMS w.r.t. WVR

- Root-mean-square of differences w.r.t WVR
- Onsala: smallest RMS for KF using $PSD_{ZWD} = 6 \text{ cm}^2/d$
 - 12% improvement w.r.t. LSM
- Tsukuba: smallest RMS for KF using $PSD_{ZWD} = 58 \text{ cm}^2/\text{d}$
 - 15% improvement w.r.t. LSM

RMS [cm]	Onsala	Tsukuba
RT	1.33	1.61
LSM	0.74	1.04
KF (58 cm ² /d)	0.67	0.88
KF (6 cm ² /d)	0.65	0.95

Summary

- Successful implementation of Kalman filter for VLBI analysis
- ZWDs from KF and LSM show good agreement for CONT11
- KF with better baseline length repeatabilities
- Comparison with WVR ZWDs: KF up to 15% better than LSM

Outlook

- Station-dependent, dynamic process noise for ZWDs
- Comparisons to GNSS ZWDs
- Tropospheric gradients comparisons (WVR, RT, GNSS)
- Simulations using turbulence theory
- Integration of external data in the estimation

15

Thanks for your attention!

benedikt.soja@gfz-potsdam.de

Acknowledgements

VLBI data: IVS Ray-tracing: Florian Zus, GFZ Potsdam WVR data: Onsala Space Observatory, Sweden GSI, Japan Travel funding: TU Berlin Project funding: FWF

GFZ

Helmholtz Centre

POTSDAM

FUIF