

Intercomparison of Eight Forward 1D Vector Radiative Transfer Models, with Performance of Satellite Aerosol Remote Sensing Algorithms in Mind

Anthony B. Davis Jet Propulsion Laboratory California Institute of Technology & Extended JPL 1D vRT Team*

CC I

**Extended* JPL 1D vRT Team

Olga V. Kalashnikova, David J. Diner, Michael J. Garay, John V. Martonchik, Vijay Natraj, Suniti V. Sanghavi, and Feng Xu

Jet Propulsion Laboratory / California Institute of Technology, 4800 Oak Grove Drive, Pasadena, Ca, 91109, USA

Alexei I. Lyapustin, Sergey V. Korkin⁺

NASA Goddard Space Flight Center, GREENBELT, Md, 20771, USA ⁺also, Universities Space Research Association / GESTAR, Columbia, Md, USA

Pengwang Zhai#

NASA Langley Research Center, HAMPTON, Va, USA #also, Science Systems and Applications, Inc. (SSAI), Hampton, Va, 23666, USA

Vladimir V. Rozanov

Institute for Environmental Physics, University of Bremen, Bremen, Germany

Alexander A. Kokhanovsky

EUMETSAT, Eumetsat Allee 1, D-64295 Darmstadt, Germany

Outline

- Why?
- Definitions & Expectations
- Phase 1 (black surface)
 - Pure cases
 - Stratified cases

Phase 2 (non-black surfaces)

- Depolarizing surfaces
- Polarizing surfaces

Summary & Outlook

- Adjusted expectations
- Dissemination

accuracy/precision

accuracy/precision

Computational 1D RT Problem

Letting ...

 $\mathbf{I}(\tau, \mathbf{\Omega}) = [I, Q, U, V]^{\mathrm{T}}(\tau, \mathbf{\Omega})$ $\tau = \sigma(H - z)$ $\mathbf{\Omega}(\mu, \phi) = \left(\sqrt{1 - \mu^2} \cos \phi, \sqrt{1 - \mu^2} \sin \phi, \mu\right)^{\mathrm{T}}$ $d\mathbf{\Omega}(\mu, \phi) = d\mu d\phi$

1D vector RT equation (vRTE):

$$\left(\mu \frac{\mathrm{d}}{\mathrm{d}\tau} + 1\right)\mathbf{I} = \varpi_0(\tau) \int_{4\pi} \mathbf{p}(\tau, \mathbf{\Omega}' \cdot \mathbf{\Omega}) \mathbf{I}(\tau, \mathbf{\Omega}') \mathrm{d}\mathbf{\Omega}$$

Boundary Conditions (BCs) for 1D vRTE:

Upper BC, for
$$\mu < 0$$
: $\mathbf{I}(0, \mathbf{\Omega}) = [F_0, 0, 0, 0]^T \delta(\mathbf{\Omega} - \mathbf{\Omega}_0) = [1, 0, 0, 0]^T \delta(\mu + \mu_0) \delta(\phi)$
Lower BC, for $\mu > 0$: $\int_{\mathbf{Phase 1: } \mathbf{I}(\tau_t, \mathbf{\Omega}) = 0$
Phase 2: $\mathbf{I}(\tau_t, \mathbf{\Omega}) = \int_{\mu' < 0} \rho(\mathbf{\Omega}' \to \mathbf{\Omega}) \mathbf{I}(\tau_t, \mathbf{\Omega}') d\mathbf{\Omega}'(\mu', \phi')$

Ð

Pure Rayleigh Case (for diagnostics)

- Rayleigh optical thickness = 0.231
- Depolarization factor δ = 0.029
- Single scattering albedo (SSA) $\varpi_0 = 1$
- Phase matrix ($\mathbf{P} = 4\pi \mathbf{p}$):

Three Pure Aerosol Cases ... (also for diagnostics)

 $\Delta = \frac{1 - \delta}{1 + \delta / 2}, \quad \Delta' = \frac{1 - 2\delta}{1 - \delta}$

Aerosol Phase Functions (a.k.a. P₁₁)

Ð

- "Smoke" small spherical absorbing (smooth phase function, no forward peak)
- "Salt" large spherical non-absorbing (forward peak, Mie backscattering features)
- "Dust" large non-spherical absorbing (smooth, forward peaked phase function)

Aerosol Phase Matrices (other elements than P₁₁)

Ð

- "Smoke" small spherical absorbing (smooth phase function, no forward peak)
- "Salt" large spherical non-absorbing (forward peak, Mie backscattering features)
- "Dust" large non-spherical absorbing (smooth, forward peaked phase function)

Dust and Rayleigh Phase Matrices (other elements than P_{11})

 (\mathbf{i})

- "Dust" large non-spherical absorbing (smooth, forward peaked phase function)
- Rayleigh, with non-vanishing depolarization factor (δ = 0.029)

N.B. Dust interpolation is linear in the ratios P_{ij}/P_{11} vs SA, as provided by Dubovik output.

Mixing of Aerosol and Rayleigh

 $\tau_{\rm R}$ = 0.0155 (λ = 865 nm), 0.2310 (λ = 560 nm), 0.5929 (λ = 443 nm)

= 0.0155

 $\tau = 0.2310$

= 0.5929

lofted aerosol

BL aerosol

"Dust" aerosol phase matrix is held constant

8.0

7.0

6.0

5.0

3.0

2.0

[ma] 2

JPL's Monte Carlo 1D (v)RT model is customized for this parameterized atmospheric structure: <u>no need for</u> <u>spatial discretization!</u>

Ē

Mixing of Aerosol and Rayleigh

(†)

- Molecular/<u>Rayleigh atmosphere stratified exponentially</u> with an 8 km scale height.
 - Serves as constant non-absorbing background for aerosol component
- 3 Rayleigh optical thickness values:
 - $-\tau_{R}$ = 0.0155 (low ROT), 0.2310 (medium ROT), 0.5929 (high ROT)
 - $\delta_{R} = 0.029$
- Absorbing aerosol confined to a uniform layer 2 km thick
- 2 scenarios:
 - "Boundary-layer" dust aerosol: 0-2 km
 - "Lofted" dust aerosol: 3-5 km

Number and make-up of sub-layers in the RT code is modeler's choice (just remember to keep track of it).

• → 6 cases: 3 ROTs x 2 aerosol layer heights

Mixed / Black Surface Cases

Models → Atmospheres ↓	Monte Carlo (MC)	Markov Chain (MarCh)	SOS	MOM (scalar only)	(v)SmartMOM	VLIDORT	SCIATRAN	SHARM / APC	adding/doubling
0-2 km dust, high ROT	\checkmark	\checkmark		~	\checkmark	\checkmark	\checkmark	\checkmark	ases
0-2 km dust, med ROT		\checkmark		~	\checkmark	\checkmark	\checkmark	\checkmark	th ph
0-2 km dust, Iow ROT		\checkmark		1	\checkmark	\checkmark	\checkmark	\checkmark	in bo
3-5 km dust, high ROT		\checkmark		1	\checkmark	\checkmark	\checkmark	\checkmark	cases
3-5 km dust, med ROT		\checkmark		~	\checkmark	\checkmark	\checkmark	\checkmark	cted (
3-5 km dust, Iow ROT		\checkmark		1	\checkmark	\checkmark			seled

 (\mathbf{i})

(cc)

Mixed / Black Surface Cases - Scalar

- 0-2 (hi ROD)

--- +MC error

----- -MC error

--- -MC error

----+MC error

- 0-2 (lo ROD)

Compare MarCh and SCIATRAN to MC ...

N.B. Early results: For eyes only!

Typical "Phase 1" Vector Results

 (\mathbf{i})

 \odot

Acknowledgment: Jesse Vasquez, summer intern

Surface BRDFs

- **Black** (since atmospheres are new & more angles)
- Lambertian
 - Albedo 0.2, commensurate with planar albedo for
 - Salt: R = 0.13 (AOT = 0.5, black surface)
 - Rayleigh: R = 0.19 (ROT = 0.231, black surface)
- Non-Lambertian: mRPV model
 - *a* = 0.15464 (same albedo at 30° SZA)
 - k = 1.5 (avoids energy-conservation problems at k < 1)
 - b = -0.5 (boosted backscatter)

$$\rho_{\lambda,\text{vol}}(\Omega_{\text{inc}} \to \Omega_{\text{ref}}) = \frac{a_{\lambda}}{\pi} \left[\mu_{\text{inc}} \mu_{\text{ref}} \left(\mu_{\text{inc}} + \mu_{\text{ref}} \right) \right]^{k-1} e^{b\mu_{\text{sca}}}$$

$$c_{\mu}(k) = 2\pi I_{\mu}(k) \text{ where } k = 2b_{\lambda} \sqrt{1 - |\mu|^2} \sqrt{1 - {\mu'}^2}$$

where we identify the modified Bessell function of the 1st kind

Surface "BRMs"

- - Black (a = 0)
 - Lambertian (a = 0.2, k = 1.0, b = 0.0)
 - mRPV (a = 0.15464, k = 1.5, b = -0.5)

Cox-Munk (representing open ocean)

- wind speed = 2 m/s (good glint peak)
- Planar albedo at SZA 30° = 0.006797
- (Integrated) albedo = 0.04108

BRF contours at 0.1(0.1)0.5

Principal plane

 $\theta_{in} = 30^{\circ}$

Hybrid/Bréon (representing land surface)

Cox-Munk: DOLP & AOLP (independent of wind speed)

 (\mathbf{i})

Figure 7: Polarization properties of the micro-facet component (29) of the surface pBRDF.

 $\rho_{11} - a/\pi$ (where $0.2/\pi \approx 0.064$)

Shadowing functions

Parametric "(p)BRDF" model

General expression:

where we have

- scattering angle cosine:
$$\mu_{\rm s}(|\mu_{\rm i}|,\mu_{\rm r},\varphi_{\rm r}-\varphi_{\rm i}) = -|\mu_{\rm i}|\mu_{\rm r} + \sqrt{1-\mu_{\rm i}^2}\sqrt{1-\mu_{\rm r}^2}\cos(\varphi_{\rm r}-\varphi_{\rm i})$$

(1000)

- specular facet's tilt angle cosine: $\cos\beta(|\mu_i|, \mu_r, \mu_s) = \frac{|\mu_i| + \mu_r}{\sqrt{2(1 - \mu_s)}}$

- shadowing function for PDF $p(\beta)$: $S_p(|\mu_i|, \mu_r)$
- incidence angle w.r.t. facet normal: $\theta_n = (\pi \cos^{-1} \mu_s) / 2$
- complex refractive index: \tilde{n}
- Fresnel coefficients: $F_{ij}(\theta_n; \tilde{n})$, standard expressions
- rotation angles: $\gamma_{i/r}(\mu_{i/r}, \varphi_{i/r})$, standard expressions

 $p_w(\beta)$: tan β is normal (mean 0, $\sigma_w > 0$) \Rightarrow $p(\beta)$: cos² β is uniform over [0,1] \Rightarrow

(p)BRDF model	а	k	b	ζ	R e[<i>n</i>]	Im[<i>n</i>]	<i>w</i> [m/s]
Black	0	1	0	0	n/a	n/a	n/a
Lambertian	0.2	1	0	0	n/a	n/a	n/a
mRPV	0.155	1.5	-0.5	0	n/a	n/a	n/a
Cox–Munk	0	n/a	n/a	1	1.33	0	2
Hybrid/Bréon	0.2	1	0	1	1.50	0	n/a

(

 (\mathbf{i})

Typical "Phase 2" Vector Results

 (\mathbf{i})

(cc)

Acknowledgment: Brahim Piqué, summer intern

Summary & Outlook

Lessons learned

- Many anecdotes from developers
- Adjusted performance expectations
 - $\delta I/I: 0.5\% \rightarrow 1\%$ (Nature's compliance with 1D assumption?); $\delta DOLP: 0.001 \rightarrow 0.002$
 - But these are for unusually tough scenarios!

Dissemination

- Journal paper
 - Motivation
 - Background
 - <u>Selected</u> graphics
- E-supplements:
 - <u>Comprehensive</u> graphics
 - Optical properties
 - Monte Carlo reference results

 $\textcircled{\sc c}$ 2014 California Institute of Technology. Government sponsorship acknowledged.