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Lee wave interference test: How does the valley width influence the interference pattern? Fr=0.38, h/z=0.6
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* By towing an obstacle through a water tank, lee wave rotors (fig 5) and hydraulic jumps (fig 6)
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The 2D simulations show that nonlinearity plays an important role in the laboratory setup.
The influence of the second mountain is still present, also in highly nonlinear regimes.
Breaking hydrostatic waves lead to unsteady flow.
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