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‚Introduction, motivation;
‚Data and procedures used;
‚Integration of broad-band Liouville equations,

comparison with observed nutation;
‚Results and conclusions.
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‚Atmospheric and oceanic excitations play dominant
role in polar motion and rotational velocity of the Earth;

‚Non-negligible effect can be seen also in nutation;
‚These effects are caused by quasi-diurnal changes of

angular momentum functions of the atmosphere and
oceans;
‚High-resolution (at least 6-hour) data are needed;

‚When studying atmospheric/ocenic effects we found:
‚  they cannot explain the observed celestial pole offsets

completely.

Introduction
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‚Recently Malkin (2013) found that changes of FCN
amplitude/phase occur near epochs of geomagnetic jerks
‚GMJ - rapid changes of the secular variation of geomagnetic

field.
‚We tested this hypothesis and found that:
‚ re-initialization of the numerical integration of Brzezinski

broad-band Liouville equations at GMJ epochs leads to
significant improvement of the agreement with the observed
celestial pole offsets;

‚best agreement is achieved for NCEP atmospheric
excitations with IB correction, for GMJ epochs + 100 days.

‚This approach leads to stepwise changes in CPO:
‚physically not acceptable.

‚Here we use a different approach - additional continuous
excitation near GMJ epochs. 

Motivation 3
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‚For the nutation, VLBI-based observations of celestial
pole offsets dX, dY, at unequal intervals:
‚ IVS combined solution ivs13q3X.eops, filtered to contain

periods 60 - 6000 days.
‚For atmospheric and oceanic excitations, angular

momentum functions χ1, 2, 6-hour data:
‚ from Atmospheric and Environmental Research, USA:
‚ NCEP/NCAR reanalysis (pressure term with IB correction ! a

simple model of oceanic response). 
‚These data are given in rotating terrestrial frame, they were

re-calculated into quasi-inertial celestial frame.

Data used, in interval 1989.00-2013.75:
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Observed and filtered (60<P<6000d) IVS celestial pole offsets
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NCEP excitations - pressure with IB correction, wind
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where 
P is the motion in celestial system;
σNC , σNf are Chandler and FCN frequency in celestial frame;
σC is Chandler frequency in terrestrial frame;
χNp , χNw are excitations (matter and motion terms) in celestial frame;
ap = 9.509×10!2, aw = 5.489×10!4 are numerical constants.

‚Integration made in two versions, with:
‚Only NCEP excitations;
‚NCEP + additional excitations around GMJ epochs
‚ continuous ‘double ramp’ functions.
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Integration with simulated schematic excitation
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‚We fix the the central epochs of additional excitations
around GMJ epochs:
‚1991.0, 1994.0, 1999.0, 2003.5, 2004.7, and 2007.5.

‚GMJ last typically several months, 
‚so we fix the length of excitation to 200 days;

‚The complex amplitudes of the excitations were
estimated:
‚ to lead to the best rms fit to observed celestial pole

offsets.
‚We tested the following epochs:
‚GMJ - 100d    (rms = 0.211 mas, corr. = 0.578)
‚GMJ               (rms = 0.196 mas, corr = 0.632)
‚GMJ + 100d   (rms = 0.213 mas, corr. = 0.570)

Procedure used:
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rms fit = 0.246 mas, corr.= 0.373
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‚Geophysical excitations yield significant contribution
to nutation, of the order of 0.1mas;

‚The influence of motion (wind) terms are one order of
magnitude smaller than that of matter (pressure) terms;

‚The application of schematic additional excitations at
GMJ epochs substantially improves the agreement of
integrated pole position with VLBI observations.

Conclusions
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