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1. SUMMARY
Modeling contaminant evolution in geologic aquifers requires coupling a groundwater flow model with a contaminant transport model. As-
suming perfect flow, an ensemble Kalman filter can be directly applied on the transport model but this is very crude assumption as flow models
can be subject to many sources of uncertainties. If the flow is not accurately simulated, contaminant predictions will likely be inaccurate even
after successive Kalman updates of the contaminant with the data. The problem is better handled when both flow and contaminant states are
concurrently estimated using the traditional joint state augmentation approach. In this study, we propose a dual states estimation strategy for
this one way coupled system by treating the flow and the contaminant models separately while intertwining a pair of distinct Kalman filters; one
on each model. This EnKF-based dual states estimation sxhibits a number of novel features:

{1} it allows for simultaneous estimation of both flow and contaminant states in parallel,

{2} it provides a time consistent sequential updating scheme between the two models,

{3} it simplifies the implementation of the filtering system, and

{4} it yields more stable and accurate solutions than the standard joint approach.

2. STATES ESTIMATION FOR ONE-WAY COUPLED MODELS

Consider the following state-space discrete processes for

one-way coupled models. Our goal is to estimate the cou-

pled system states xk and x̃k. Assume that observations yk

and ỹk are available from both models at time tk. From a se-

quential Bayesian perspective, the Maximum A Posteriori

(MAP) estimator of the coupled system is then:[
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2.1 Standard Joint States Sequential Estimation:
One forms a new joint state, Zk =

[
xT

k , x̃T
k

]T
and observation, Yk =

[
yT

k , ỹT
k

]T
vectors. The estimation problem then reduces to:

ZMAP
k = arg max

Zk

p (Zk|Y0:k) .

Pros: Reasonable computational cost requiring NNe
(
Cx + C̃x

)
+ 2NN2

e Nx + NNe
(
Cy + C̃y

)
.

Cons: Tractability due to the large degrees of freedom and consistency of the updating scheme between the two models.

2.2 Dual States Sequential Estimation:
The joint density of both system states is separated (marginal estimation) and decomposed into two terms:

p (xk, x̃k|y0:k, ỹ0:k) = p (x̃k|xk, y0:k, ỹ0:k) · p (xk|y0:k, ỹ0:k) .

Then, maximization of both densities is simultaneously performed using two parallel filters:

xMAP
k = arg max

xk
p (xk|y0:k, ỹ0:k) & x̃MAP

k = arg max
x̃k

p (x̃k|xk, ỹ0:k)

State -1 Filter:

(i) Forecast ensemble-1: x f ,i
k =Mk

(
θk, xa,i

k−1

)
,
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(iii) Update with model-1 data: xa,i
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(iv) Update with model-2 data: xa,i
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State -2 Filter:

(i) Forecast ensemble-2: x̃ f ,i
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(
θ̃k, xa,i
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,

(ii) Update with model-2 data: x̃a,i
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Pros: Ease of implementation, flexible assimilation framework and consistent updating scheme of both model forecasts.
Cons: Computationally intensive requiring NNe

(
Cx + 2C̃x

)
+ 3NN2

e Nx + NNe
(
Cy + 2C̃y

)
.

3. FLOW AND CONTAMINANT TRANSPORT EXPERIMENTAL RESULTS

The schemes are tested in a 2D flow and transport system in a con-
fined aquifer. The total modeling time is 17 years.

Flow Model (x): ∇ · (K∇ξ) = So
∂ξ

∂t
+ qξ, u = −K∇ξ,

Transport Model (x̃):
∂ (ϕRdC)

∂t
+∇ · (uC− D(u)∇C) = qC.

We performed three different experiments with different observa-
tion strategies. In each experiment, three perturbation scenarios
are conducted.

Plotted below are the recovered contaminant fields using joint and dual EnKF schemes (Exp. 1 and Sc. 1), the average absolute error of the
estimated contaminant state using both schemes, and comparison of the computational complexity.

4. DISCUSSION
- With perfect forecast flow and transport models, the joint algorithm

performs equally well as the dual algorithm.

- Adding modeling errors to the coupled forecast models degrades the
accuracy of the joint estimates.

- When large observational errors are imposed on the data, the dual ap-
proach provides more accurate results than the joint technique even
when fewer observations are assimilated over time.

- The computational cost of using the dual technique, although higher
than that of the joint approach, is more beneficial than the joint algo-
rithm with large ensemble sizes.
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