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Abstract

The present study reports a global thermal model TC1 for the continental upper mantle constrained on 3

a 1°x1° grid. Surface heat flow measurements allow us to constrain the thermal state of the upper mantle
only for about 40% of the continents, which is sufficient to perform a statistically significant analysis of
lithospheric geotherms for continental terranes with different tectonic settings and different geological ages. |

A compilation of tectono-thermal ages of the continental crust averaged on a 1°x1° grid formed the basis {| AgesMa) |
of the present global thermal model (Artemieva, 2006). A major assumption for the analysis is that {| Il 3000 to 3501
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(Artemieva and Mooney, 2001) form the basis for the analysis. For tectonically active regions with transient - 850 to 1100
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thermal regimes, lithospheric temperatures are based primarily on xenolith geotherms. These data are | ;‘5‘3 o 223
supplemented by electrical conductivity profiles for cratonic regions. {17 50 to 250

[/l o to 50

Data on lithospheric thickness constrained by statistical relations between geological ages and mantle
geotherms are used next to calculate the growth rate of lithospheric mantle since the Archean. Its
comparison with growth models for the crust and with the age distribution of juvenile crust permits
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The bars indicate the scatter in the values, but not their Surface heat flow (mW/m?)

uncertainties. Gray area shows the general trend of lithospheric
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