

Towards the simulation of sizeresolved aerosol over Europe: model and observations

Matthias Karl and Svetlana Tsyro

EGU 2014 Vienna, 27 April – 2 May, 2014

Outlook

- Main features of EMEP-MAFOR model
- Model results for size-resolved aerosol and comparison with observations for 2008 and 2010:
 - European aerosol data, 2008 (Asmi et al., 2011)
 - Selected ebas sites, 2010
- Process analysis: effect of BVOC and AVOC on new particle formation and growth (test runs vs. Observations)
- Summary of main findings

Motivation

- Knowing the aerosol size distribution is essential for studies of:
- Health implications of air pollution: ultrafine particles (<100 nm)</p>
 - penetrate the epithelial cells of the lungs and accumulate in lymph nodes (Nel et al., Science 2006).
 - epidemiological and toxicological studies show clear correlation between ultrafine particles and health endpoints (Daher et al., Environ. Science, 2013).
- Aerosol radiative effects
- Various aerosol processes (aerosol-clouds interaction, new particle formation and secondary aerosols etc.)

Karl and Tsyro. EGU-2014 Vienna, Austria.

MAFOR Aerosol Dynamics

- Solves size distribution of a mixed multicomponent aerosol on a fixed sectional grid (invariable volume)
- Documentation: Karl et al., Tellus, 2011; http://mafor.nilu.no
- Evaluated with chamber data (Karl et al., ACP 2012) and PNC measurements at motorway (Keuken et al., AE, 2012); compared to other AD models (AEROFOR, Pirjola & Kulmala, 2001).
- Consistent initiation and time integration of particle number and mass concentrations
- Condensation/evaporation of H₂SO₄ and condensable OV follows explicit formulation based on APC scheme (M.Z. Jacobson, 2000).
- SOA precursors: isoprene, monoterpenes, aromatics (in reactions with OH, O₃ and NO₃)

The EMEP/MSC-W standard model

- <u>Eulerian</u> chemical transport model Open Source http://emep.int
- <u>Horizontal grid</u>: flexible wrt projection and resolution:
 - \circ Regional domain (Europe+N. Atlantic): 50x50 km² to 1x1 km²PS \rightarrow LatLon
 - Global domain: 1º x 1º
- <u>Vertical grid</u>: 20 layers (up to 100 hPa) planned flexibility of vertical resolution
- Meteorology: ECMWF-IFS (standard), HIRLAM, WRF
- **<u>Chemistry</u>**: 130 species, about 160 reactions
- <u>Aerosols</u>: SO_4 , NO_3 , NH_4 , EC, OA (POA+SOA), sea salt, min. dust Bulk mass: fine and coarse modes ($PM_{2.5}$, PM_{10})
- \circ SOA: 1D-VBS with 4 volatility bins
- <u>Use for policy applications:</u> Status, trends and projections of long-range trans-boundary pollution under the UN ECE LRTAP Convention

eoroloaical

Institute

Computational structure of EMEP-MAFOR

() BY

(cc)

Karl and Tsyro. EGU-2014 Vienna, Austria.

Nucleation parameterizations

Boundary Layer

 H_2SO_4 cluster activation $J_{act} = A \cdot C_{g,H_2SO_4}$ $A = 2.4 \text{ e-7 s}^{-1}$ Sulphuric acid - biogenic organic $J_{b,het} = K_b \cdot C_{g,BLOC} \cdot C_{g,H_2SO_4}$ $K_b = 1.1 \text{ e-14 cm}^3 \text{ s}^{-1}$ Sulphuric acid - aromatic acid $J_{a,het} = K_a \cdot C_{g,ALOC} \cdot C_{g,H_2SO_4}$ $K_a = 7.5 \text{ e-14 cm}^3 \text{ s}^{-1}$

Sulphuric acid production:

$$\mathbf{OH} + [\mathbf{SO}_2] \longrightarrow \mathbf{H}_2 \mathbf{SO}_4 \qquad k = 2.0 \text{ e} - 12 \text{ cm}^3 \text{s}^{-1}$$

Critical Limit for nucleation onset

Wexler et al. (1994):

$$C_{crit} = 0.16 \cdot \exp(0.1T - 3.5RH - 27.7) \times 0.05$$

Free Troposhere

Binary homogeneous H_2SO_4/H_2O nucleation, parameterization from Vehkamaki et al. (2002)

Karl and Tsyro. EGU-2014 Vienna, Austria.

Simulation setups

- <u>REFerence</u> ARO run: H_2SO_4 aromatic acid nucleation, condensation of H_2SO_4 + biogenic + aromatic OVs
- Test BIO run: H_2SO_4 –biogenic organics nucleation, condensation of H_2SO_4 + biogenic OVs
- Test SO4 run: Cluster activation nucleation, only H₂SO₄ condensation
- **Observation data sources:**
 - Asmi et al. Year: 2008 (annual/seasonal PNC & size distribution)
 - EBAS (various sites): Year 2010, dN/dlogDp
 - SPC (San Pietro Capofiume): Year 2010, dN/dlogDp
 - SmartSMEAR (Hyytiälä) : Summer 2010, VOC, H₂SO₄, OH

Karl and Tsyro. EGU-2014 Vienna, Austria.

Seasonal differences

Scatter-plot: modelled vs. observed total PNC (d>10nm) in 2008 Birkenes

Observational data from Asmi et al., ACP, 2011 http://www.atm.helsinki.fi/eusaar/

 (\mathbf{i})

(cc)

Karl and Tsyro. EGU-2014 Vienna, Austria.

Aspvreten Pallas Vavihill **Boesel** K Puszta **Melpitz Kosetice** Waldhof Finokalia Ispra Harwell MaceHead Cabauw Zugspitze Jungfraujoch Ny Alesund2 Hyytiala Hohenpeissenber Puy deDome Schauinsland Mt Cimone

Annual median size distribution (2008)

 $(\mathbf{\hat{I}})$

CC

MODEL:

- bimodal size distribution (Observed is closer to unimodal distribution)
- Summer: too many particles <20nm – nucleated particles not growing to observed size
- In summer: VBS-SOA and agriculture biomass burning missing
- In winter: wood burning (residential heating) underestimated.
 Other indications: from EC & OC comparisons

Norwegian

Institute

Meteorological

NPF Event Analysis (15-50 nm)

 $J_{15} = \frac{dN_{15-50}}{dt} + F_{coag} + F_{growth}$ Nucleation = total number change + Loss by coagulation **Formation rate** + Loss by growth **Growth rate** Linear fit to the maximum value of the size distribution (dN/dlogDp) as it varies over time. Condensational growth GR_{15.50} between 15 and 50 nm $CS = 2\pi D * \sum_{i=1}^{max} \beta_i * Dp_i * N_i$ Proportional to condensational **Condensation sink** scavenging of vapours $CoagS_{15} = \frac{1}{2}K_{1,1}N_1 + \sum_{j=2}^{max} K_{1j}N_j$ **Coagulation sink Survival probability** $SP_{15,50} = exp\left(\frac{-\tau_{15,50}^{cond}}{\tau_{15,50}^{coag}}\right)$ Survival probability from 15 to 50 nm. with $\tau_{15,50}^{cond} = \frac{50 - 15nm}{GR_{15,50}}; \quad \tau_{15}^{coag} = \frac{1}{CoagS_{15}}$

Karl and Tsyro. EGU-2014 Vienna, Austria.

rological

Institute

Event Frequency

SP Capofiume 2010

Definition of event: $dN_t (15-30 \text{ nm}) > 5 \cdot dN_{t-1} (15-30 \text{ nm})$ [hourly averages] growth of 15-50 nm particles for > 2 hours and GR > 0.28 nm/h

Norwegian Meteorological

Birkenes 2010

SP Capofiume 2010 - Observations

SP Capofiume 2010-ARO

 (\mathbf{i})

(cc)

Karl and Tsyro. EGU-2014 Vienna, Austria.

Norwegian
Meteorological
✓ Institute

Cumulative distribution functions only from event days. Smooth appearance due to assumption of normal distributed data

Hyytiälä 2010 - Observations

Hyytiälä 2010-ARO

Karl and Tsyro. EGU-2014 Vienna, Austria.

Norwegian Meteorological Motitute

Cumulative distribution functions only from event days. Smooth appearance due to assumption of normal distributed data

Golden Day Events» Hyytiälä, 24-30 March 2003

(cc)

Karl and Tsyro. EGU-2014 Vienna, Austria.

Summary of main findings

- > Missing particle sources in winter and in summer
 - Wood burning (domestic heating) in winter
 - Agriculture biomass burning in summer
 - SOA from VBS model is currently missing
- Based on the event analyses it cannot be decided whether biogenic or aromatic VOC are involved in nucleation. On average, nucleation involving biogenic organics results in more events than observed.
- Underestimation of 50-200 nm particles in summer at remote sites, possibly due to:
 - Model predicts too many events in summer with too high GR
 - BVOC chemistry at night identified as possible reason for interruption of particle growth

Karl and Tsyro. EGU-2014 Vienna, Austria.

oloaical

Acknowledgement

- > Anne Hjellbreke (NILU) and Wenche Aas (NILU) for EBAS data
- > Maija Kajos (Univ. Helsinki) for SMEAR data on VOC
- Tuomo Nieminen (Univ. Helsinki) and Michael Boy (Univ. Helsinki) for SMEAR data on H2SO4 and OH
- Jorma Joutsensaari (UEF) and Ari Laaksonen (FMI) for SPC data
- > Partly funded by Transphorm EU FP7 Project
- > Matthias Karl thanks NILU for financial support

Thank you for your kind attention!

Appendix

PNC and PM size-resolved definition

 (\mathbf{i})

(cc)

Bulk vs. Size-resolved Sulphate 2010 mean compared to EMEP-stations

Bulk

Size-resolved

Mean 5% higher Correlation: 0.72

Correlation: 0.70

MAFOR Gas-phase reactions

□ SOA precursors: isoprene, a-pinene, o-xylene

Educts	Products	Rate constant
C5H8 + OH	ISRO2 (peroxy radical of isoprene)	2.7e-11*exp(390.0/ <i>T</i>)
[ISRO2] + [NO]	0.003 BLOC + 0.101 BSOC	KRO2NO
[ISRO2] + [HO2]	0.024 BLOC + 0.119 BSOC	0.706·KHO2RO2
α-pinene + O3	0.2 BLOC + 0.8 TERPRO2 (peroxy radical of monoterpenes)	6.3e-16*exp(-580.0/ <i>T</i>)
α -pinene + OH	TERPRO2	1.2e-11*exp(444.0/ <i>T</i>)
[TERPRO2] + NO	0.052 BLOC + 0.184 BSOC + 1.6 HCHO + MGLYOX + 0.6 MAL + NO2	KRO2NO
[TERPRO2] + [HO2]	0.327 BLOC + 0.180 BSOC + 1.0 HCHO + MGLYOX + 0.9 CO	KHO2RO2
BSOC + [OH]	BLOC	4.0e-11
OXYL + OH	OXYRO2 (peroxy radical of aromatics)	1.36e-11
OXYRO2 + NO	0.003 ALOC	KRO2NO
OXYRO2 + HO2	0.106 ALOC	KHO2RO2

Chamber SOA: a-pinene+O3 \rightarrow x BLOC+ (1-x)TERPRO2

 $(\mathbf{\hat{I}})$

CC

Karl and Tsyro. EGU-2014 Vienna, Austria.

Norwegian Meteorological

Institute

 \sim