A cost-effective laser scanning method for mapping stream channel geometry and roughness
Norris Lam1, Marcus Nathanson1, Niclas Lundgren2, Robin Rehnström2, Steve W. Lyon1
Stockholm University1, Umeå University2
Norris.Lam@natgeo.su.se

Abstract
In this pilot project, we combined an Arduino Uno and SICK LMS111 outdoor laser ranging camera to acquire area scans of the channel and bed for a temporarily diverted stream. The 5m by 2m area was scanned at a 4mm point spacing which resulted in a point cloud density of 5600 points/m². A local maxima search algorithm was applied and a grain size distribution of the stream bed was extracted. The system resolved both large-scale geometry (e.g. bed slope and channel width) and small-scale roughness elements (e.g. grain sizes between about 30mm and 255mm) in an exposed stream channel thereby providing a resolution adequate for estimation of ecohydraulic roughness parameters such as Manning’s n.

Laser scanner components
- SICK LMS111 outdoor laser ranger mounted in custom gondola
- Arduino Uno controlled servo motors and sending of xyz data via wifi network

Camera/data specifications
- 905nm laser (near-infrared, absorbed by water)
- Systematic error: ±30mm
- Maximum scan distance: up to 20m
- Point spacing of 4mm was achieved
- Stream was temporarily diverted

Total cost:
- 4500€

Hardware Setup

Processing Steps

Results

Results – small scale
- \(d_{50}\) (median) modeled elements were equivalent to measured values
- \(d_{100}\) (largest) modeled element about 35% smaller than mean of largest recorded pebble size
- \(d_{84}\) (commonly used) modeled element about 7% larger than mean \(d_{84}\)
- Small modeled elements about 10mm but in practice should be set at 30mm (systematic error)

Conclusion
- Camera-based laser scanning system presented here offers a viable, cost-effective alternative able to resolve both large-scale channel geometry and small-scale roughness elements. The initial case study considered here shows such a system’s promise for practical application in particular for those working on a limited or fixed research budget.

We thank the crew at Krycklan catchment study for facilitating this study. The work was financially supported by the Swedish Research Council (VR Grant No. 2011-4390), Swedish Foundation for International Cooperation in Research and Higher Education (STINT Grant No. 2013-5261), Ministry of Education and Research at the Swedish Government, the Education Administration at the City of Stockholm and the Bolin Center for Climate Research.