Source term identification in atmospheric modelling via sparse optimization

Lukáš Adam
ÚTIA, Czech Academy of Sciences

in cooperation with
Martin Branda and Thomas Hamburger

EGU
Vienna, Austria
April 14, 2015
Inverse modelling

- From observations $y \in \mathbb{R}^m$ we try to estimate release $x \in \mathbb{R}^n$
- We have (linear) model $M \in \mathbb{R}^{m \times n}$, which is known as sensitivity matrix
- Applications
 - Nuclear accidents (Fukushima)
 - Volcano eruption
 - Enforcing pollution limits
Solution approaches

- Minimize the distance between y and Mx
- Add nonnegativity constraint on x
- Problem
 \[
 \begin{aligned}
 & \text{minimize} & \|Mx - y\|_2^2 \\
 & \text{subject to} & x \geq 0.
 \end{aligned}
 \]

- Problem unstable. Some regularization (Tikhonov) is usually added
 \[
 \begin{aligned}
 & \text{minimize} & \|Mx - y\|_2^2 + \alpha \|x\|_2^2 \\
 & \text{subject to} & x \geq 0.
 \end{aligned}
 \]

- Problematic interpretation?
 - Minimizing $\|Mx - y\|$ and $\|x\|$. Why the second part?
 - How to choose α?
Denoting m_i columns of M, we have $Mx = \sum_{i=1}^{n} x_i m_i$

Small norm of m_i may cause x_i to be huge

Typical column norms of M

Idea: omit columns with small norm
Comparison of $\sum_{i=1}^{n} x_i$ for using Tikhonov regularization and removing some columns

![Graph showing comparison of sum(x) vs log10(threshold) for optimal, Tikhonov, and matrix reduction methods.](image)
Sparsity

- Idea: look for a solution with high number of nonzeros
- Good interpretation for both identifying release point and release window
- Define $\|x\|_0$ to be the number of nonzeros and solve

$$\begin{align*}
& \text{minimize} \quad \|Mx - y\|_2^2 \\
& \text{subject to} \quad \|x\|_0 \leq k_{tol}, \\
& \quad x \geq 0.
\end{align*}$$

- Parameter $k_{tol} \in \mathbb{N}$ makes more sense than $\alpha > 0$
(a) Original solution

(b) OLS solution

(c) Sparse solution with $k_{tol} = 5$

(d) Sparse solution with $k_{tol} = 10$

(e) Sparse solution with $k_{tol} = 15$
Conclusion

- We have proposed to use the techniques of sparse optimization to the field of atmospheric modelling.
- We modified the known methods to handle nonnegativity constraints.
- The methods seem to have a good performance.
- Submitted version available at Optimization Online
 www.optimization-online.org/DB_HTML/2015/04/4861.html