Morphometric assessment of uplifting coral reef sequences, Sumba Island, Indonesia

Maëlle Nexer, Christine Authemayou, Taylor Schildgen, Wayhoe Hantoro, Stéphane Molliex, Bernard Delcaillau, Kevin Pedoja, Laurent Husson, and Vincent Regard
1. Introduction

1. Sequences of paleoshorelines
 e.g. coral reef terraces (CRT), marine terraces, beach deposits

2. Incised by rivers
 Studied through morphometric indices
 e.g. drainage area, hypsometry, slope, ...

- Record successive highstands (eustasy) & emerged from tectonic (e.g. Lajoie, 1986)
- Staircase surfaces: isochrons, isohypsises
- Chronostratigraphy = uplift rates for upper & middle Pleistocene

Intent to fix 1 other parameter
Lithology → Reefal limestone (i.e. seq. of CRT)

1. Coral reef terraces: mapping & extension of previous work
2. Drainage: 8 morphometric indices: Area, relief, hypsometric integral, shape factor of catchments, residual relief, incision, k_{sn} & SL index
 - 3 different scales: island, 15 catchment, coastal areas of similar uplift rates
Convergence of 3 main plates: Pacific, Indo-Australia & Eurasia

Sumba Island

Transition collision / subduction + well dated sequence CRT

Data from Hall (2002) & Pedoja et al. (2011)
3. Setting

Sumba Isl.: Ancient volcanic-arc uplifted + 2/3 of the coast = reefal limestone
3. Setting

Cape Laundi

6 main terraces up to 475 m, ESR + U/Th = chrono-morpho-stratigraphy
Key site for long record (1 Ma) of Pleistocene sea levels

ESR: 322 ±48, 327 ±49, 397 ±59 ka
U/Th: > 300 ka

Jouannic et al. 1988; Pirazzoli et al., 1991; Hantoro, 1992; Pirazzoli et al. 1993; Bard et al., 1996
4. Results: coral reef terraces analysis

1- Cartographic comparison:
Slope map vs prev. works (80% correlation)

2- Extension chrono-stratigraphy

3- Benchmark choice:
continuous = Terrace IIIb = MIS 11 (400 ka)

4- Coastal uplift rates

Nexer et al., in press

Legend:
- Red: MIS 5a-5e
- Yellow: IIa: MIS 7-9
- Pink: IIc: MIS 13
- Green: IIb: MIS 9
- Blue: IV: MIS 15-17
- Purple: V: MIS 19-23
- Violet: VI: MIS 25-29
- Our study (slope map, hillshade)
Excellent playground to investigate relationship between morphometric indices and slow to moderate coastal uplift rates.
4. Results: drainage

Island scale

- **Residual relief & incision**: Seq. Of CRT = Low incision

![Diagram of residual relief and incision](image)

![Map of island scale](image)

Indian Ocean

Savu Sea

- **Incision**
 - High: 478 m
 - Low: 0

Limite of coral reef terraces
4. Results: drainage

Island scale - Stream length indices: k_{sn} & SL index

$S = k_s a^{-\theta}$

$k_{sn} = k_s a^{-\theta_{ref} - \theta}$

S: slope

k_s: slope index

a: area

Θ: concavity

Cape Laundi

Long profile of streams 13, 14 & 15

Knickpoints when rivers cross paleo-seacliff
4. Results: drainage

Catchment scale

- Area, relief, hypsometric integral, shape factor of catchments, residual relief, incision, k_{sn} & SL index.

High values on Cape Laundi
4. Results: drainage

"Zone of similar uplift rates" scale

12 zone of same range of uplift rates: same lithology + area larger than catchments
6. Discussion: correlations morphometric indices vs uplift rates

Catchment scale

Hypsometric integral, shape factor, SL & k_{sn}: tools to isolate high uplift rate zones (>0.3 mm/yr).

Mean relief, residual relief & incision: influenced by streams transient state \rightarrow drainage young (<1 Ma?) + staircase morphology.
6. Discussion: correlations morphometric indices vs uplift rates

"Zone of similar uplift rates" scale

Residual relief & incision: poor correlation with uplift rate

Correlations are stronger when morphometric indices are extracted by range of uplift rates
6. Conclusions

- Knowledge of coastal tectonic of Sumba improved

- Variations morphometric indices function of uplift rates:
 Only incision & residual relief are not correlated to uplift rates because drainage network are not always in steady state

- “New tools” to discriminate rapidly uplifting areas:

 For Sumba Island when

 - HI > 0.55
 - Shape factor < 0.45
 - SL index > 150 m
 - $k_{sn} > 35$ m

 Uplift rates > 0.3 mm/yr

 [Nexer et al., in press (Geomorphology)]
Thanks for your attention