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AIRTOSS-ICE Campaign

É May and September 2013 over North and Baltic Sea
É Collocated measurements of microphysics and radiation
É Sample inhomogeneous cirrus clouds
É Investigate the formation processes

Figure: Learjet Airtoss configuration (Frey et al., 2009)
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Meteosat view 4th of September at 9.30 UTC

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

2 4 6 8 10 12 14

49

50

51

52

53

54

55

56

Figure: High clouds in blueish white and low clouds in yellow
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High number concentrations in cloud tops

Figure: Cloud tops seen out of the learjet front window
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Trajectory latitude and longitude
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Figure: Lagranto (Wernli and Davies, 1997) backward trajectories
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Trajectory height
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Figure: Height of trajectories colored with RHi
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Microphysical Model
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Figure: Microphysics in the model (Spichtinger and Gierens, 2009)
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Dynamical Model

EULAG (Prusa et al., 2008)
É Version solves the anelastic equations.
É Split in environmental state and deviation: ψ′ = ψ − ψe

Mass conservation
∇ · (ρ0 ) = 0

Momentum conservation

d

dt
= −∇

�

p

ρ0

�′
− g

Θ′d
Θ0

Energy conservation

dΘ′

dt
= − · ∇Θe + FΘ
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Sounding and idealized profiles
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Model Setup

Fixed parameters
É vertical grid spacing dz = 50m
É horizontal grid spacing d, dy = 100m
É time step dt = 1 s
É horizontal extension 0 ≤  ≤ 25km
É vertical extension 4km ≤ z ≤ 14km

Varied parameters
É Large scale ascent rate 3 ≤ ≤ 5cms−1

É Number of Ice Nuclei N = 0,10,100L−1

É Wind profile
É Temperature profile
É RH profile
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Objective PDF Comparison (Bhattacharyya, 1943)

If p is the probability density of distribution P in bin i and q for
distribution Q, then

p
p · q is the geometric mean of the two.

BC =
∑
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Figure: Random normal pdf distributions
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Probability for ice particle numbers
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Figure: Ice number of measurements compared to simulations
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Probability for ice particle mass
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Figure: Ice mass of measurements compared to simulations
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Probability for ice particle numbers
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Figure: PDF similarity of various simulations compared to measurements
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Figure: PDF similarity of various simulations compared to measurements
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Figure: PDF similarity of various simulations compared to measurements
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Figure: PDF similarity of various simulations compared to measurements
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Ice particle number concentration
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Figure: Contours of ice particle number concentrations
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Summary

É Inhomogeneous cirrus sampled

É Variation from 10 to 1000 particles per liter on small scale

É Large scale motion shows only small and continuous updraft

É Small scale motion needed to explain measurements

É Sounding shows potentially unstable layer

É Parameter space explored with simulations

É Simulations statistically compared to measurements

É Scenario with shallow convection matches measurements best

Thank you for attending
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