

Inhomogeneous cirrus clouds during the AIRTOSS-ICE campaign

EGU General Assembly 2015 Vienna

Matthias Voigt Peter Spichtinger

Institute for Atmospheric Physics (IPA) Johannes Gutenberg University (JGU) Mainz, Germany

15 April 2015

- May and September 2013 over North and Baltic Sea
- Collocated measurements of microphysics and radiation
- Sample inhomogeneous cirrus clouds
- Investigate the formation processes

Figure: Learjet Airtoss configuration (Frey et al., 2009)

Measurements	Large scale motion
•00	00

lodel

- Collocated measurements of microphysics and radiation
- Sample inhomogeneous cirrus clouds
- Investigate the formation processes

Figure: Learjet Airtoss configuration (Frey et al., 2009)

Measurements •00 Large scale motion

lodel 2000

Figure: High clouds in blueish white and low clouds in yellow

Measurements 000 Large scale motion

Model 0000

High number concentrations in cloud tops

Figure: Cloud tops seen out of the learjet front window

Measurements 00• Large scale motion

lodel

Results

High number concentrations in cloud tops

Figure: Cloud tops seen out of the learjet front window

Measurements

Large scale motion

lodel

Results 000000

High number concentrations in cloud tops

Figure: Cloud tops seen out of the learjet front window

Measurements

Large scale motion

lodel

Results 000000

Figure: Lagranto (Wernli and Davies, 1997) backward trajectories

 Measurements
 Large scale motion
 Model

 000
 •0
 0000

Results

Figure: Height of trajectories colored with RHi

Measurements	Large scale motion	Model	Results	6/16
000	0.	0000	000000	

Figure: Microphysics in the model (Spichtinger and Gierens, 2009)

Measurements	Large scale motion	Model	Results	7/16
000	00	0000	000000	

EULAG (Prusa et al., 2008)

- Version solves the anelastic equations.
- ▶ Split in environmental state and deviation: $\psi' = \psi \psi_e$

Mass conservation

$$\nabla \cdot (\rho_0 \, \mathbf{u}) = 0$$

Momentum conservation

$$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = -\nabla \left(\frac{\rho}{\rho_0}\right)' - \mathbf{g} \frac{\Theta'_d}{\Theta_0}$$

Energy conservation

$$\frac{\mathrm{d}\Theta'}{\mathrm{d}t} = -\mathbf{u} \cdot \nabla \Theta_e + F_\Theta$$

Measurements 000 Large scale motion

Model 0000 Results

Sounding and idealized profiles

Measurements	Large scale motion	Model	Results	9/16
000	00	0000	000000	

Sounding and idealized profiles

Fixed parameters

- vertical grid spacing dz = 50 m
- horizontal grid spacing dx, dy = 100 m
- time step dt = 1 s
- ▶ horizontal extension $0 \le x \le 25$ km
- ▶ vertical extension $4 \text{ km} \le z \le 14 \text{ km}$

Varied parameters

- ► Large scale ascent rate $3 \le w \le 5 \text{ cms}^{-1}$
- ▶ Number of Ice Nuclei IN = 0, 10, $100 L^{-1}$
- Wind profile
- Temperature profile
- RH_i profile

If p_i is the probability density of distribution P in bin i and q_i for distribution Q, then $\sqrt{p_i \cdot q_i}$ is the geometric mean of the two.

$$BC = \sum_{i} \sqrt{p_i \cdot q_i}$$
$$0 \le BC \le 1$$

Figure: Random normal pdf distributions

easurements	Large scale motion	Model
00	00	0000

M

11/16

If p_i is the probability density of distribution P in bin i and q_i for distribution Q, then $\sqrt{p_i \cdot q_i}$ is the geometric mean of the two.

$$BC = \sum_{i} \sqrt{p_i \cdot q_i}$$
$$0 < BC < 1$$

Figure: Random normal pdf distributions

easurements	Large scale motion	Model
00	00	0000

M

Results

Probability for ice particle numbers

Figure: Ice number of measurements compared to simulations

Measurer	nents Large scale r	motion Model	Results	12/16
000	00	0000	000000	

Probability for ice particle mass

Figure: Ice mass of measurements compared to simulations

Measurements	Large scale motion	Model	Results	13/16
000	00	0000	00000	

Measurements 000 Large scale motion

Model 0000 Results

Measurements	
000	

Large scale motion

Model 0000 Results

Measurements Large

Large scale motion

Model 0000 Results

Measurements 000 Large scale motion

Model 0000 Results

Figure: Contours of ice particle number concentrations

Measurements	Large scale motion	Model	Results	15/16
000	00	0000	000000	

- Inhomogeneous cirrus sampled
- Variation from 10 to 1000 particles per liter on small scale
- Large scale motion shows only small and continuous updraft
- Small scale motion needed to explain measurements
- Sounding shows potentially unstable layer
- Parameter space explored with simulations
- Simulations statistically compared to measurements
- Scenario with shallow convection matches measurements best

- Inhomogeneous cirrus sampled
- Variation from 10 to 1000 particles per liter on small scale
- Large scale motion shows only small and continuous updraft
- Small scale motion needed to explain measurements
- Sounding shows potentially unstable layer
- Parameter space explored with simulations
- Simulations statistically compared to measurements
- Scenario with shallow convection matches measurements best

Thank you for attending

Measurements 000 Large scale motion

lodel 2000

References I

- Bhattacharyya, A. (1943). "On a measure of divergence between two statistical populations defined by their probability distributions". In: *Bull. Calcutta Math. Soc.* 35, pp. 99–109.
- Frey, W. et al. (2009). "A new airborne tandem platform for collocated measurements of microphysical cloud and radiation properties". In: *Atmospheric Measurement Techniques* 2.1, pp. 147–158.
- Prusa, Joseph M. et al. (2008). "EULAG, a computational model for multiscale flows". English. In: *COMPUTERS & FLUIDS* 37.9, 1193–1207.
- Spichtinger, P. and K. M. Gierens (2009). "Modelling of cirrus clouds Part 1a: Model description and validation". In: Atmospheric Chemistry and Physics 9.2, pp. 685–706.

Wernli, H. and H. C. Davies (1997). "A Lagrangian-based analysis of extratropical cyclones .1. The method and some applications". In: *Quarterly Journal of the Royal Meteorological Society* 123.538, pp. 467–489.