Valuing investments in sustainable land management using an integrated modelling framework to support a watershed conservation scheme in the Upper Tana River, Kenya

EGU, April 2015 Johannes Hunink^{*}, Benjamin Bryant, Adrian Vogl, Peter Droogers **j.hunink@futurewater.es*

Land and water in Upper Tana, Kenya

#FutureWater

#FutureWater

How a water fund works

Business case, modeling framework

What and where to invest

- Investment portfolios for (total budget over 10 yrs):
 - \$2.5 million USD
 - \$5 million USD
 - \$10 million USD
 - \$15 million USD

Activity	Allowed on
Riparian management	15m buffer alongside streams, except urban, agroforestry, roads, and natural areas. Not allowed within the border of Kenya Forest Service lands.
Agroforestry	Bare soil, grassland, and croplands (except pineapple)
Terracing	Bare soil, croplands (except tea), and agroforestry lands with >12% slope and >15m from stream channel.
Reforestation	Grassland, shrub, and croplands (except pineapple) located within 500m inside the border of Kenya Forest Service lands (anti-encroachment strategy)
Grass strips	Bare soil, croplands (except tea), and agroforestry lands with <12% slope
Road mitigation	Unpaved roads

Impacts of investments

Businesss as usual

Investment portfolios

Ζ

Erosion reduction after investing

#FutureWater

Downstream benefits

- For water supply, three main cost savings quantified in the Business Care are:
 - 1. Avoided use of flocculants
 - 2. Avoided electricity costs
 - 3. Greater water revenue from reducing use of processed water in backwashing

Figure 11 Average sediment concentration by month at the Mwagu intake (mg/kg), the water primary intake for Nairobi, showing sediment concentration reduced by 50–60% depending on the month.

*#***FutureWater**

Figure 12 Sediment export from the priority watersheds and implication for lost reservoir volume

For hydropower, benefits quantified were:

- Increased power generation from increased water yield.
- Avoided interruptions in electricity generation.

Upstream agricultural benefits

- SWAT output for each calculation unit and scenario
 - Soil loss
 - Crop transpiration
- Soil maps
 - Water retention capacity
 - Organic matter content
- Economic Water Productivity based

Land use	Increase in revenue (US\$m)	Total area with activities (ha)	Increase in rever ie / ha (US\$/ha)
Coffee	1.7	6,280	264
General agriculture	0.9	13,295	68
Теа	0.4	814	479

10mUS

2 - 5

20 - 50

Yield increase % C Kease

Erosion reduction

10mUS\$

< 0.1

0.1 - 0.3 0.3 - 1.0

Erosion reduction (ton/ha/

yield

Return on Investment

Figure 17 Total annual benefits and costs over time including continued maintenance after 10 years (in USD million)

Figure 18 Annual net benefits and Net Present Value of the Water Fund as a whole (in USD million)

Table 6 Non-monetised benefits

Stakeholder	Benefit	
NCWSC	Reduction in wet sludge disposal	
NCWSC	Avoided service interruptions	
NCWSC	Increased dry season flows	
Other water suppliers	Lowered sediment levels	
Municipal water processors	More reliable water supply	
KenGen	Reduction in reservoir sedimentation	
KenGen	Avoided turbine intake maintenance costs	
Upstream farmers	Increased fodder for livestock	
Upstream famers	mers Additional income and employment opportuniti	
Urban private sector processors	Improved water supply	
Local communities	Cleaner drinking water	
General: Ecosystem services	More habitat for pollinators	
eneral: Ecosystem services Increased carbon storage in new trees		

Table 5 Cumulative benefits across benefit streams

Stakeholder	Benefit/Cost	USD
Water Fund	Investment cost	(7,110,000)
Ag producers	Net additional cost (maintenance, etc)	(8,520,000)
Ag producers	Upstream farmers	12,000,000
NCWSC	Avoided flocculant costs	394,000
NCWSC	Avoided electricity costs	36,700
NCWSC	Net revenue from saved process water	2,090,000
NCWSC	Total NCWSC benefits with scale-up	3,390,000
KenGen	Avoided Interruptions	281,000
KenGen	Increased generation from increased water yield	5,870,000
KenGen	Total KenGen benefits	6,160,000
	Present Value of Benefits	21,500,000
	Present Value of Costs	(15,600,000)
	Net Present Value	5,900,000

Conclusions

- An integrated modeling framework was used to identify key locations to implement a set of SLM measures and economic impact of these interventions was modelled for three key stakeholder groups (farmers, water supply, hydropower)
- Over 50% reduction in sediment concentration in rivers (varying by watershed and time of year); An 18% decrease in annual sedimentation in Masinga reservoir; Up to US\$3 million per year in increased agricultural yields for smallholders and agricultural producers; Approximately US\$250,000 in cost savings a year for water supply stemming from avoided filtration

Business case demonstrates a clear economic basis for the establishment the Water Fund, and should boost support from donors, water users and local stakeholders – critical to a final "mature" water fund

