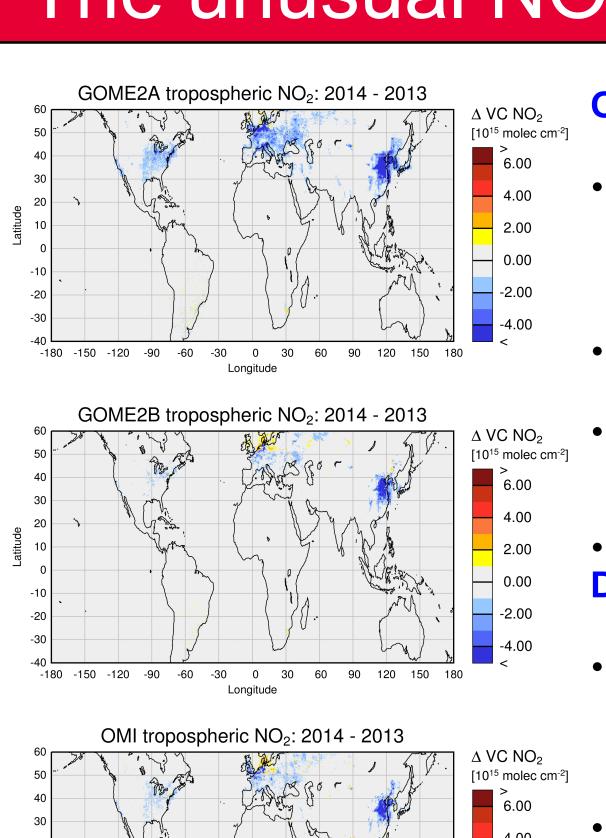
A. Richter, A. Hilboll, and J. P. Burrows

Email: Andreas.Richter@iup.physik.uni-bremen.de

Institute of Environmental Physics/Remote Sensing, University of Bremen, FB 1, P.O. Box 330440, D-28334 Bremen, Germany



Introduction

- NO₂ is a good indicator for tropospheric pollution
- satellite retrievals of tropospheric NO₂ are available since 1996, providing now nearly 20 years of data
- consistency between trends derived from different satellite instruments is good
- large trends have been reported in these data with mostly decreases in industrialised countries and increases in countries with rapidly growing economies, in particular China
- some unexpected changes appear to have happened recently

The unusual NO₂ decrease in 2014

Observations

- comparing the GOME2 A tropospheric NO₂ columns from 2014 and 2013, there is a marked downward trend over most of the northern hemisphere
- the same (although less pronounced) can be found in GOME2 B data and OMI retrievals
- using a zoomed in colour scale, it is apparent that also OMI sees a decrease over a large fraction of the NH

Discussion

- the similarity between data from all three instruments makes an instrumental problem very unlikely, although GOME2 A trends appear to be biased high
- an artefact from the use of reference sector stratospheric correction can be excluded as it would not be limited to polluted regions
- NO₂ reductions from emission controls and weak economic development may be part of the explanation but the effect appears too uniform and over China also too large

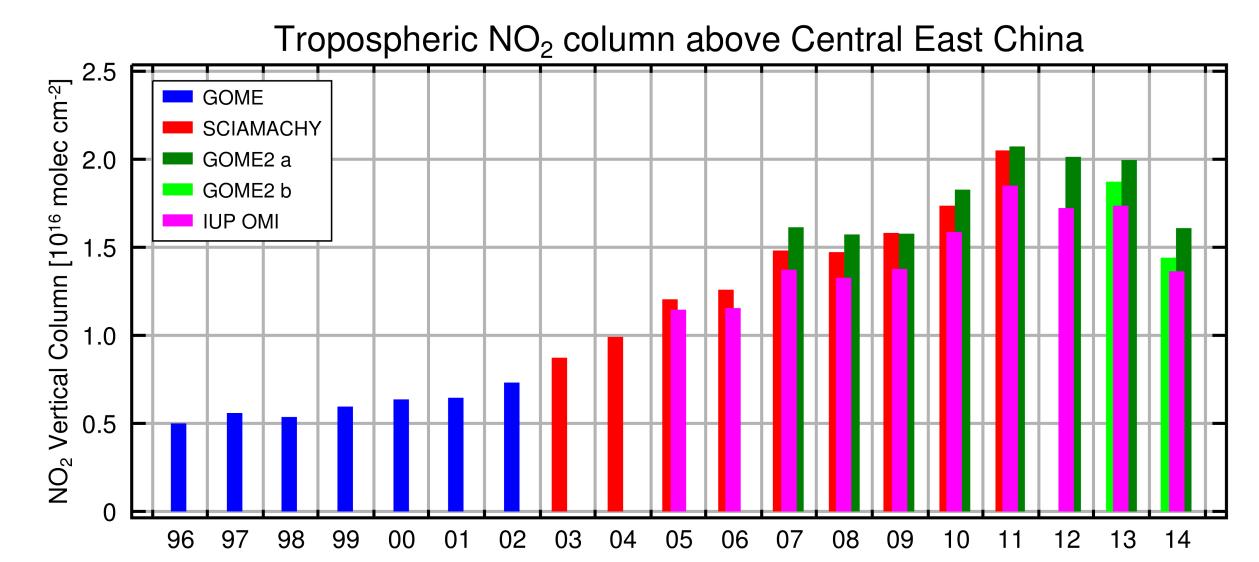
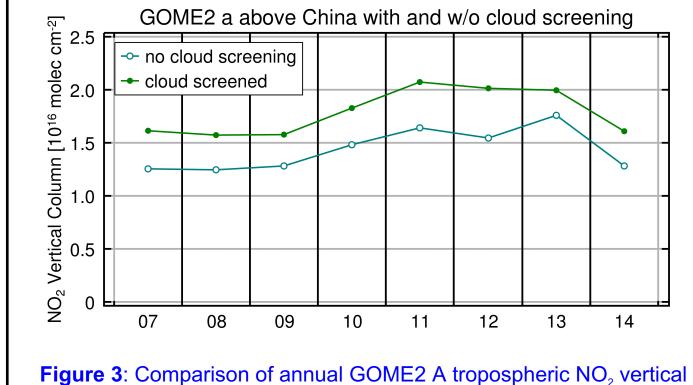

=> we do not have a good explanation yet!

Figure 1: Differences of annual mean tropospheric NO₂ columns for 2014 - 2013. From top to bottom: GOME2 A, GOME2 B, OMI, OMI with zoomed in colour scale. All retrievals are IUP fits with simple reference sector stratospheric correction

Funding by the University of Bremen and the EU FP7 program PANDA is gratefully acknowledged


• GOME and SCIAMACHY Iv1 data were provided by ESA through DLR, GOME-2 Iv1 data were provided by EUMETSAT, OMI Iv1 data by NASA

NO₂ trends above China

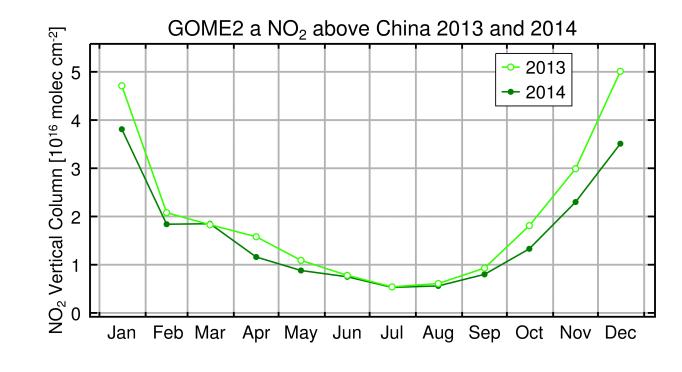


Figure 2: Tropospheric vertical columns of NO₂ retrieved from measurements of the GOME, SCIAMACHY, GOME2 A, GOME2 B and OMI instruments over East Central China (30°N - 40°N, 110°E - 123°E). All data are IUP retrievals using the same AMF and reference sector stratospheric correction and a cloud screening of 0.2.

- large increase observed in NO₂ columns over central eastern China from 1996 to 2011
- good overall consistency between different satellite instruments
 - OMI columns lower because of noon overpass time
 - GOME2 A data seem to be biased high for unknown reasons
 - stagnation / some reduction after 2011
- very clear reduction in 2014 seen by all three instruments
 - emission control effects?
 - economic downturn?
 - interannual variability?

columns above east central China using two different analysis, the standard data (green) and a version using no cloud screening (aqua curve)

Figure 4: Direct comparison of monthly tropospheric NO₂ vertical columns above east central China for 2013 and 2014.

- cloud effects and / or problems with cloud retrieval could be one possible explanation for the reduced NO₂ in 2014. However, comparison with an analysis using all data (no cloud screening) shows a similar decrease.
- in 2013, the difference between cloud screened and not screened data is smaller as cloud screening removed part of the intense pollution episode in January 2013
- direct comparison of GOME2 A data from 2013 and 2014 shows that NO₂ in 2014 was lower than in 2013 for every single month
- differences are smaller in summer than in winter
- OMI and GOME2 B data (not shown) exhibit the same behaviour

More NO₂ trends

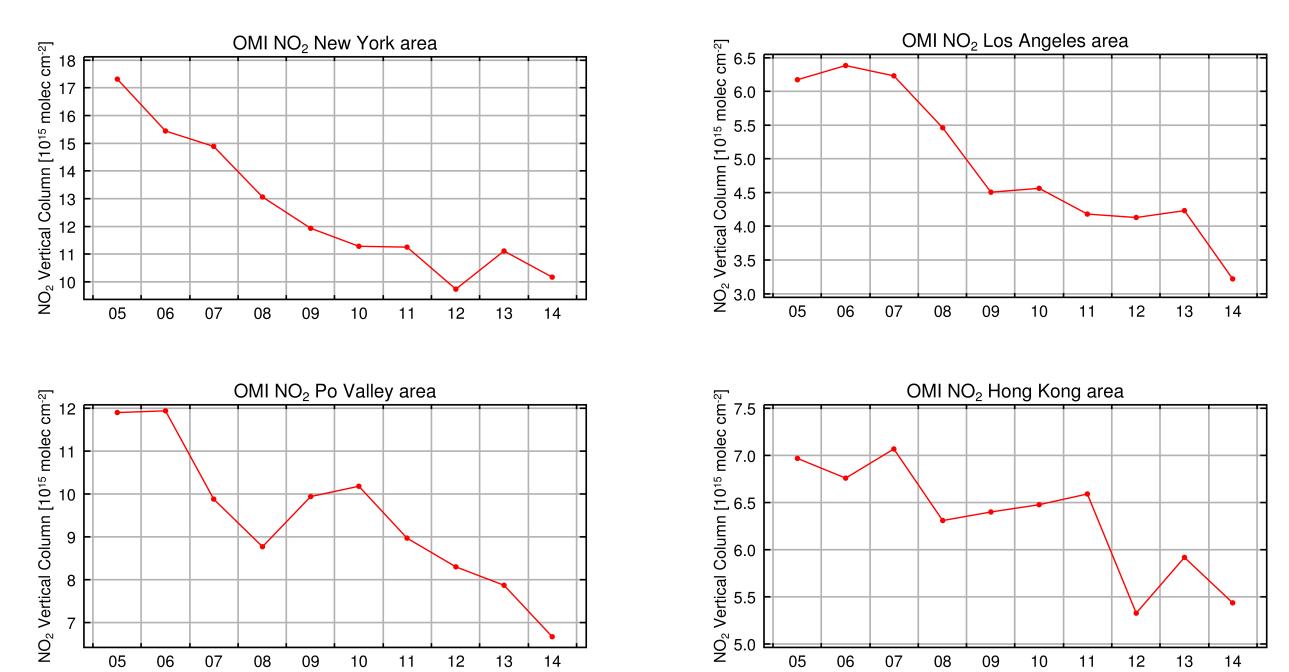


Figure 5: Time series of OMI tropospheric NO₂ vertical columns over selected agglomerations

- continuous downward trends in NO₂ can be found in many regions of the world, in particular in the US but also in Europe
- Hong Kong is an exception to the rest of China in that the downturn in NO₂ columns started already in the early 2000
- the year 2014 stands out in some but not all time series

Conclusions

- the satellite NO₂ column trends above east central China have stopped to increase and in 2014, a clear downturn is observed
- the change in trend is consistent between all satellite instruments used
- continuing downward trends are also observed in other parts of the world, in particular the US
- the year 2014 appears to be special in that NO₂ columns were significantly lower than in 2013 in most of the northern hemisphere in several satellite products
- instrumental effects can only explain part of the 2014 effects
- cloud issues also seem not to be the explanation
- this unexpected result needs more investigation

Selected references


Hilboll, A., Richter, A., and Burrows, J. P.: Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments, *Atmos. Chem. Phys.*, **13**, 4145-4169, doi:10.5194/acp-13-4145-2013, 2013.

Richter, A., Burrows, J. P., Nüss, H., Granier, C. and Niemeier, U.: Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 437(7055), 129–32, doi:10.1038/nature04092, 2005.

Schneider, P., Lahoz, W. A., and van der A, R.: Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide, Atmos. Chem. Phys., 15, 1205-1220, doi:10.5194/acp-15-1205-2015, 2015.

Van der A, R. J., Peters, D. H. M. U., Eskes, H., Boersma, K. F., Van Roozendael, M., De Smedt, I. and Kelder, H. M.: Detection of the trend and seasonal variation in tropospheric NO2 over China, J. Geophys. Res. Atmos., 111(x), 1–10, doi:10.1029/2005JD006594, 2006.

