Copula-based estimation of large-scale water storage changes:
exploiting the dependence structure between hydrological and GRACE data (IT
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First, we analysed the applicability of the proposed method to spherical
harmonic coefficients from GRACE. Second, the performance of water
storage change prediction from precipitation is evaluated. The copula-
based estimates are compared with filtered GRACE data in the spectral
Figure 5: Precipitation and filtered GRACE data in September 2009. They and spatial and time domain. The analysis shows that our estimates and
show a different pattern in South America. the filtered GRACE data are In very good agreement. Th_usZ we concluQe

that the copula-based method is indeed able to fill the missing months in

the GRACE-dataset and to even extend the time-series until the launch of

Clayton September 2009 Frank September 2009 Gumbel September 2009 GRACE Follow On.
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We assimilate data using copula by the following steps (Vogl et al., 2012).

1. Independent identically distribution (iid)-transformation of input time-
series

2. Compute the marginal distribution of the input data Figure 3: Degree variance of unfiltered and filtered GRACE data and the
3. Transform data to rank space using the estimated marginal distribution filtered data using Archimedean copulas in February 2006. Reference
4. Compute the empirical dependency structure between random
variables _ _ _ Vogl, S., Laux, P., Qiu, W., Mao, G., and Kunstmann, H.: Copula-based assimilation of

5. Fit a theoretical copula to empirical copula The comparison between degree variance of copula filtered and the ) i : i 1 radar and gauge information to derive bias corrected precipitation fields,
5 S | dom data f th ditional la CDF filtered data shows very good agreement. Hydrol. Earth Syst. Sci., 16, 2311-2328. 2012.

- odmpie ranaom data from the conditiona COPU a _ _ Figure 6: The copula filtered data generated out of precinitation usin Nelsen, R.: An Introduction to Copulas, Springer Series in Statistics, 2010.
7. Transfer the sample back to the data space using the inverse marginal. g ' P g precip g Sklar, A.: Fonctions de repartition a n dimensions et leurs marges, de I’Institut

Archimedean copulas in September 2009. de Statistique de 1’Universite de Paris 8, 229-231, 1959.




