

Direct simulation of open-channel flow in the fully rough regime : focus on fluid-roughness interaction

Marco Mazzuoli & Markus Uhlmann marco.mazzuoli@kit.edu, markus.uhlmann@kit.edu

Open-channel flow (OCF) over a rough surface

The interaction of OCF with a rough surface can be observed both in natural and industrial environments and gives rise to different fundamental processes

- ► It produces the friction head loss and originates the transport of sediments in shallow gravel-bed rivers
- ► It causes soil erosion of hill slopes and the subsequent formation of grooves
- ► It is studied for industrial applications to promote the reduction of drag (e.g. flow over riblets)

Results: 1. Velocity profiles

line color	run	$rac{U_{bh}}{u_{ au}}$	Re _b	Re_{τ}	D^+	Δ_{χ}^+	simulation tim [<i>bulk units</i>]
	F10	15.09	2870	190.1	10.87	0.7765	105.0
	F50	12.2	2872	233.7	49.05	1.066	78.0
	F120	11.71	6885	578.4	124.8	1.178	88.8

The near-bottom peak of the streamwise velocity root mean square, u'_{rms} , is significantly smoothed and is located beneath the level of sphere crests.

► Velocity fluctuations at the fully rough regime show the tendency to be more isotropic than at the transitionally rough regime

+_o 60} 40 20

Roughness function as a function of $k_{s\infty}^+$. Nikuradse (1933) (\bigcirc), Ligrani & Moffat (1986) (\bigtriangledown) , Shockling et al. (2006) (\blacktriangleright) , present DNS with $k_{s\infty}^+ = 0.63D^+$ (\blacksquare) and error-bars $[0.55, 1]D^+$. Colebrook (1939) (- - -), $\Delta U^+ = 5.75 \log(k_{s\infty}^+) - 8.48 + 5.1 (- \cdot -).$

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Short introduction

The turbulence structure in the roughness sublayer and the action of turbulent vortices on the individual roughness elements are presently investigated by means of Direct Numerical Simulation (DNS) of OCF over an array of fixed rigid spheres placed on a flat wall in square arrangement. The values of the fluid and particle Reynolds numbers are in the range at which the flow regime is fully rough. A comparison with the previous work of Chan-Braun et al., JFM (2011), who investigated numerically OCF at the transitionally rough regime in a similar bottom configuration, is also made.

Institute for Hydromechanics Kaiserstr. 12 76131 Karlsruhe www.ifh.kit.edu

Numerical approach

The approach adopted to numerically solve the incompressible Navier-Stokes equations is based on a second-order fractional-step method. The temporal discretisation is semi-implicit (Crank-Nicolson scheme for the viscous terms and three-step Runge-Kutta procedure for the non-linear part) while spatial operators are evaluated by central finite-differences on a staggered uniform grid. A variant of the immersed boundary method proposed by Uhlmann, JCP (2005) is employed to force the boundary conditions at the sphere surfaces.

-	-						
F_{y}/F_{R}	σ_{F_z}/F_R	\mathcal{S}_{F_x}	$\mathcal{S}_{F_{\mathcal{Y}}}$	\mathcal{S}_{F_z}	\mathcal{K}_{F_x}	$\mathcal{K}_{F_{\mathcal{V}}}$	\mathcal{K}_{F_z}
.772	1.50	0.104	0.317	-0.0354	3.78	4.53	4.55
.650	1.26	0.0558	0.272	-0.014	5.07	5.76	4.32
otes th	e normaliz	zed mean	force co	mponent i	in the :	x_i —dir	ection,
sulting f	force with	respect to	the $x-$	-axis. σ_{F_i} ,	\mathcal{S}_{F_i} and	d \mathcal{K}_{F_i} a	are the
t the $i-$	-th compo	nent of th	ie force,	respective.	ly.	1.2	
T_y/T_R	σ_{T_z}/T_R	S_{T_x}	\mathcal{S}_{T_y}	\mathcal{S}_{T_z}	\mathcal{K}_{T_x}	\mathcal{K}_{T_y}	\mathcal{K}_{T_z}
.144	0.131	0.688	0.007	-0.369	4.52	4.59	3.59
.114	0.273	-0.010	-0.008	6 -0.747	3.78	4.92	3.35
notes th	ne normaliz	zed mean	torque a	about x_i .	σ_{T_i}, S_{T_i}	and h	\mathcal{C}_{T_i} are
sis of th	e i—th cor	nponent o	of the to	rque, respe	ectively	•	
	Lift rei Reynolds capabilit their poo	markably s numbery of the eket at t	y incl er. Th e flow t he fully	reases is possib o dislodg / rough r	with oly en ge par regime	incre hance ticles	asing s the from
10	Both the to force spheres similarly	e value and to approac to Gau	of kurt rque ir hes 3 (ssian d	osis \mathcal{K}_{F_i} nstantane (in particistributic	and λ eously cular on of p	\mathcal{C}_{T_i} reacting acting case of \mathbf{I}	elated 1g on F120) 5ility
	Positive ative flue	fluctuat: ctuation	ions of s both	lift are st in case F	ronge: 50 an	r than d F12	n neg- 20
	The redubalanced (flow is n	uction of l by stre more iso	f spanw eamwise tropic)	rise torqu e and wa	ie in ca all-nori	ase Fi mal to	120 is orque
10 -	$rac{F_x'}{\sigma_F}$, $rac{T_x'}{\sigma_T}$		$\frac{F_y'}{\sigma_F}$, $\frac{T_y'}{\sigma_T}$	$\frac{F'_z}{\sigma_F}$,	$\frac{T'_z}{\sigma_T}$	 G	laussian