Determination of degradation rates of organic substances in the unsaturated soil zone depending on grain size fractions of various soil types

Thomas Fichtner
Technische Universität Dresden

EGU Vienna, 15th April 2015
Influence on biodegradation

Rate and extent of biological degradation of organic substances in unsaturated zone influenced by

- Chemical and physical properties of substances
 - Water solubility
 - Toxicity
 - Molecular structure

- Soil-specific properties
 - pH-value, IEC
 - Organic matter
 - Grain size distribution
 - Pore volume, distribution of pore sizes
 - Water content, oxygen supply
 - Transport and storage capacity of water and nutrients
 - Influence on life and growth conditions of bacteria

(Source: http://toolboxes.flexiblelearning.net.au)

Fig. 1 Pore sizes depending on grain size
Characterization of soil pore system

- Description of soil pore system and distribution of different pore sizes with soil moisture retention curve

- Distribution of pore sizes affects the water content, transport and storage capacity of water and nutrients as well as oxygen supply

Fig. 2 Water retention curve

Tab. 1 Properties of different pore sizes

<table>
<thead>
<tr>
<th>Pore size range</th>
<th>Equivalent diameter [µm]</th>
<th>Water tension [cm WS, hPa]</th>
<th>[pF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wide coarse pores</td>
<td>> 50</td>
<td>0 – 60</td>
<td>< 1.8</td>
</tr>
<tr>
<td>Narrow coarse pores</td>
<td>50 - 10</td>
<td>60 - 300</td>
<td>1.8 – 2.5</td>
</tr>
<tr>
<td>Mesopores</td>
<td>10 – 0.2</td>
<td>300 - 15000</td>
<td>2.5 – 4.2</td>
</tr>
<tr>
<td>Micropores</td>
<td>< 0.2</td>
<td>> 15000</td>
<td>> 4.2</td>
</tr>
</tbody>
</table>

Source: Weynants et. al (2009); Vadose Zone Journal 8(1)
State of the art and resulting objectives

- Batch experiments with unsteady state conditions
- Better biodegradation with soil that has smaller particles e.g. Zhang and Bouwer (1997)

<table>
<thead>
<tr>
<th>source</th>
<th>saturation (%)</th>
<th>soil type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pramer, Baratha (1972)</td>
<td>53 - 71</td>
<td>Silty loam</td>
</tr>
<tr>
<td>Dibble, Bartha (1979)</td>
<td>28 - 95</td>
<td>Medium sandy loam</td>
</tr>
<tr>
<td>Dupont et al. (1991)</td>
<td>70 - 93</td>
<td>Medium silty sand</td>
</tr>
<tr>
<td>Briglia et al. (1992)</td>
<td>58 - 82</td>
<td>Sandy loam</td>
</tr>
<tr>
<td>Sims et al. (1993)</td>
<td>30 - 98</td>
<td>Medium sandy loam</td>
</tr>
<tr>
<td>Okeke et al. (1996)</td>
<td>70 - 100</td>
<td>Sandy loam</td>
</tr>
<tr>
<td>Rice et al. (2000)</td>
<td>83 - 100</td>
<td>Sandy clay loam</td>
</tr>
</tbody>
</table>

Determination of the correlation between the grain size fractions respectively pore sizes, water content, oxygen supply and the biodegradation rate of infiltrated organic substances in column experiments
Experimental setup

Fig. 2 Experimental setup
Used grain size fractions

- Determination of pore volume with air pyknometer
 (Source: UGT GmbH)

- Determination of water retention curve/pore sizes with HYPROP system (evaporation method according to Wind (1966) and Schindler (1980))
 (Source: UMS GmbH)

Fig. 3 Grain size distribution curve and used fractions
Selection of organic substances

- Pre-tests with *Sphingobium yanoikuae* and different organic substances (glucose, yeast extract, peptone, starch, oxalic acid, salicylic acid and mixes of those)

- Search for a solution of organic substances which can be culture medium for *Sphingobium yanoikuae*

<table>
<thead>
<tr>
<th>Tab.</th>
<th>Concentrations of used organic substances in the solutions [g/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solution 1</td>
</tr>
<tr>
<td>Glucose</td>
<td>1</td>
</tr>
<tr>
<td>Yeast extract</td>
<td>0.5</td>
</tr>
<tr>
<td>Peptone</td>
<td>0.5</td>
</tr>
<tr>
<td>Starch</td>
<td>0.5</td>
</tr>
<tr>
<td>Oxalic acid</td>
<td>0.5</td>
</tr>
<tr>
<td>Salicylic acid</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4 Growth curve for *Sphingobium yanoikuae* bacteria in solutions with different mixes of organic substances

> Choosing of solution with a mix of glucose, oxalic acid, salicylic acid
First results – pore size distribution

Fig. 5 Distribution of pores sizes in grain size fraction 0.2 – 0.63 mm (A) and 0.63 – 1 mm (B)

- Differences in proportion of wide coarse and micropores
 > Different water contents, transport and storage capacity of water and nutrients, oxygen supply
 > What is the optimal water/oxygen ratio for bacteria?
First results – infiltration and saturation

Fig. 6 Changing of water content due to 3 infiltrations over 24 hours in the soil with grain size fraction 0.63 – 1 mm

Fig. 7 Soil saturation
First results – DOC and oxygen

Fig. 8 DOC for fraction 0.2 – 0.63 mm (A) and 0.63 – 1 mm (B)

Degradation rate: 0.21 d\(^{-1}\)

Fig. 9 Oxygen content for fraction 0.2 – 0.63 mm (A) and 0.63 – 1 mm (B)

Degradation rate: 0.43 d\(^{-1}\)
Summary and outlook

- One of the first column experiments to the influence of pore sizes on the biodegradation

- Higher saturation in soil with smaller grain size fraction

- **Higher degradation rate in soil with bigger grain size fraction**

 Replenishment of nutrients and oxygen has higher influence on degradation than water content

Outlook:

- Continuing with fraction 0.063 – 0.2 mm to confirm results

- Repetition of experiments to confirm results
Contact

ADDRESS

Technische Universität Dresden
Institute of Waste Management and Contaminated Site Treatment
Pratzschwitzer Str. 15
01796 Pirna
GERMANY

Thomas Fichtner

Phone: +49 3501 530068
Fax: +49 3501 530022
Email: thomas.fichtner@tu-dresden.de
www.tu-dresden.de/uw/inowas