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Abstract and Motivation APpf

Since the launch of ESA’s GOCE satellite in 2009 and its end in
2013, a sequence of official GOCE gravity field models was re-
leased. One of the series of models follows the so called time-wise
approach (EGM TIM). They are purely based on GOCE observa-
tions such that they are independent of other gravity information
and describe the Earth’s gravity field as seen by GOCE. The mod-
els of the time-wise series were computed within the ESA funded
High-level Processing Facility (HPF) and are part of the official
ESA GOCE products. Gravity gradients in the gradiometer ref-
erence frame and the satellite positions as derived by GPS mea-
surements entered the solutions as observations. Together with
the spherical harmonic coefficients, a realistic and full covariance
matrix is provided reflecting the model quality.

This contribution summarizes the gravity field models derived with
the time-wise approach. The progress along the five releases is
highlighted. Special focus is put on the final release 5. This model,
parameterized as 78 957 spherical harmonic coefficients (spatial
resolution of 71 km), was determined from 4×109 799 264 gravity
gradient measurements and 108 754 709 three dimensional posi-
tions within a joint least squares adjustment procedure. As this
gravity field models only depend on GOCE observations, the gain
of GOCE compared to other missions and other gravity field prod-
ucts can be clearly demonstrated. With release 5 of the time-wise
model, a pure GOCE based model with a mean global accuracy
of 2.4 cm at a spatial resolution of 100 km for the geoid (0.7 mGal
for gravity anomalies) is available.

The time-wise approachAPpf
satellite orbits
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GOCE-only gravity field model independent of other gravity data
Target parameters: spherical harmonic coefficients + accuracy as ΣΣΣxx
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SST processing:
I short arc integral equation approach
I stochastic model: position covariance + empirical cov. function
I least squares normal equations

SGG processing:
I gravity gradients in GRF as time series
I components used Vxx,Vxz,Vyy and Vzz

I stochastic model: individually adjusted ARMA filters
I iterative outlier detection
I least squares normal equations

Constraints:
I Kaula for (near) zonal coefficients (polar gap)
I Kaula for high degree coefficients

Combined solution:
I solution of weighted combined normal equations
I weights derived by variance component estimation 1
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Data used in the EGM TIM modelsAPpf
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release/type input/info time series (d/o) # obs
EGM TIM RL01 SST, SGG, REG 11/2009–01/2010 2–224 24 524 268

SST energy balance, in-flight velocity pointwise 2–100 6 013 954
SGG VXX , VYY , VZZ 1 gapless segment 2–224 3 × 6 161 834
REG zonal coefficients – m < θ0l 5 490
REG high degree coefficients – 170–224 19 322

EGM TIM RL02 SST, SGG, REG 11/2009–07/2010 2–250 82 696 288
SST energy balance, in-flight velocity pointwise 2–100 24 228 376
SGG VXX , VYY , VZZ 9 gapless segments 2–250 3 × 19 477 946
REG zonal coefficients – m < θ0l 6 866
REG high degree coefficients – 180–250 27 208

EGM TIM RL03 SST, SGG, REG 11/2009–04/2011 2–250 ≈ 215 000 000
SST energy balance, in-flight velocity pointwise 2–100 ≈ 3 × 30 000 000

SGG VXX , VYY , VZZ ,VXZ 16 gapless segments 2–250 4 × 31 289 605
REG zonal coefficients – m < θ0l 6866
REG high degree coefficients – 180–250 27 208

EGM TIM RL04 SST, SGG, REG 11/2009–06/2012 2–250 480 719 445
SST short arcs, 3-D positions 35 min arcs 2–130 3 × 69 692 004
SGG VXX , VYY , VZZ ,VXZ 41 gapless segments 2–250 4 × 67 305 785
REG zonal coefficients – m < θ0l 6 866
REG high degree coefficients – 180–250 27 208

EGM TIM RL05 SST, SGG, REG 11/2009–10/2013 2–280 765 504 101
SST short arcs, 3-D positions 35 min arcs 2–150 3 × 108 754 709
SGG VXX , VYY , VZZ ,VXZ 87 gapless segments 2–280 4 × 109 799 264
REG zonal coefficients – m < θ0l 8 644
REG high degree coefficients – 201–280 34 274

The latest solution EGM TIM RL05APpf
EGM TIM RL05 and contributers compared to others models (solid: differences, dashed: formal errors)
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EGM TIM RL05
XX 79
XZ 79
YY 79
ZZ 79

Seg. 79 (21 days), consistent error estimates except for YY

Progress along the releasesAPpf
Difference of EGM TIM releases and EGM2008 in terms of geod heights at d/o 200 (m)
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Outlook and future workAPpf
SST updates: reduce magnetic equator effect
geoid heights with respect to GOCO05S (500 km filtered)

EGM TIM RL05 SST improved SST solution

SGG updates: outlier detetection, robust filter estimation, relative
combination
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I SGG-only solution, s = 50
I 30 days data
I cumulative formal error

(l 30–280):reduction 16%
I cumulative empirical error

(l 30–280): reduction 9%

Summary and Conclusions
I five releases of the time-wise models are available
I current mean global accuracy at d/o 200: 0.7 mGal, 2.4 cm
I full covariance matrix is an essential part of the model
I GOCE EGM TIM RL05 normal equations are used in the

combined satellite-only model GOCO05S
I although all data is used in EGM TIM RL05 remaining potential

in GOCE data was identified
I reanalysis of the whole data set as an update for

EGM TIM RL05 or a release 6 is planned ( IUGG 2015)
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