

European Geosciences Union General Assembly 2015 A case study on the potential of robust decorrelation filter design for a reprocessing of a gravity field model from GOCE data

Jan Martin Brockmann, Wolf-Dieter Schuh and Boris Kargoll

Institute of Geodesy and Geoinformation Department of Theoretical Geodesy University of Bonn

Vienna, 14.04.2015

Brockmann et al

Vienna, 14.04.2015

EGU2015-12307 🙂 0

- Filter estimates
- Consequences for gravity field estimates

Within the GOCE time-wise approach (EGM_TIM gravity field models)

- SGG observations are treated as time series along the orbit
- partioned into gapless parts of time series (segments)
- gradient components V_{XX} , V_{XZ} , V_{YY} and V_{ZZ} are separately analyzed
- gradiometer noise is approximated by an ARMA process
- are assumed to be uncorrelated
- inverse process is used as complete decorrelation filter

observations as time series

decorrelation filters for $V_{\boldsymbol{Z}\boldsymbol{Z}}$

Timeline of EGM_TIM Models

release	timespan	d/o	U	S	epochs
EGM_TIM_RL01	11/2009-01/2010	2–224	50172	1	6161834
EGM_TIM_RL02	11/2009-07/2010	2-250	62997	9	19477946
EGM_TIM_RL03	11/2009-04/2011	2-250	62997	16	31289605
EGM_TIM_RL04	11/2009-06/2012	2-250	62997	41	69692004
EGM_TIM_RL05	11/2009-10/2013	2–280	78957	87	109799264

For entire mission data set as in EGM_TIM_RL05: $4 \times 87 = 348$ filters adjusted

Filter estimation procedure (old)

Starting point are gradient residuals (per component c, per segment s)

$$\mathbf{v}_{c,s} = \mathbf{A}_{c,s}\tilde{\mathbf{x}} - \mathbf{l}_{c,s}$$

- manual selection of a part without gross errors (red)
- least squares estimation of ARMA process (requires equidistant data)
- outliers, non-stationarity of time series are ignored for the estimation of filters, outlier detection separately
- \Rightarrow effects may smear into filter (and spectrum)

Filter estimation procedure (new)

$$\mathbf{v}_{c,s} = \mathbf{A}_{c,s}\tilde{\mathbf{x}} - \mathbf{l}_{c,s}$$

- ▶ use of entire segment, robust estimation of AR process (L1 norm)
- details: Fri. 15:30, EGU2015-13050, Schuh etal. Correlation analysis for long time series by robustly estimated autoregressive stochastic processes
- outliers directly an output from filter estimation (green)
- \Rightarrow more outliers, stable filter estimate

universität **bonn**

Three long segments of lower orbit campaign for case-study

segment	start	end	# observations	note
50	01-Aug-2012	31-Aug-2012	2 645 205	first decay phase
58	02-Dec-2012	13-Jan-2013	3 632 149	
76	17-Jun-2013	13-Jul-2013	2 325 772	

universität **bonn**

Three long segments of lower orbit campaign for case-study

segment	start		end #		# observations		note	
50	01-Aug-	01-Aug-2012		012	2 645 205		first decay phase	
58	02-Dec-	02-Dec-2012)13	3 632 149			
76	17-Jun-	17-Jun-2013		13-Jul-2013 2		772		
outlier stat	istics							
segment	XX		XZ		YY		ZZ	
	#	%	#	%	#	%	#	%
50 old	70 600	2.7	35 036	1.3	5 5 3 1	0.2	42 879	1.6
50 new	707 381	26.7	613 017	23.2	298 166	11.3	33 839	1.3
58 old	51 335	1.4	100 429	2.8	10 129	0.3	40 089	1.1
58 new	28 066	0.8	15 704	0.4	398 071	11.0	6 924	0.2
76 old	78 006	3.4	102 083	4.4	221 230	9.5	13 149	0.6
76 new	160 428	6.9	61 415	2.6	584 366	25.1	141 187	6.1

universität**bonn**

Three long segments of lower orbit campaign for case-study

segment	start		end # obse		# observati	ons	note		
50	01-Aug-	01-Aug-2012		31-Aug-2012		2 645 205		first decay phase	
58	02-Dec-	02-Dec-2012)13	3 632 149				
76	17-Jun-2013		13-Jul-2013 2 325		772				
outlier stat	istics								
segment	XX		XZ		YY		ZZ		
	#	%	#	%	#	%	#	%	
50 old	70 600	2.7	35 036	1.3	5 5 3 1	0.2	42 879	1.6	
50 new	707 381	26.7	613017	23.2	298 166	11.3	33 839	1.3	
58 old	51 335	1.4	100 429	2.8	10 129	0.3	40 089	1.1	
58 new	28 066	0.8	15 704	0.4	398 071	11.0	6 924	0.2	
76 old	78 006	3.4	102 083	4.4	221 230	9.5	13 149	0.6	
76 new	160 428	6.9	61 415	2.6	584 366	25.1	141 187	6.1	

 \Rightarrow new method is more aggressive w.r.t. outliers

 \Rightarrow selects highest quality data for filter estimation

Estimated filters: s = 50

new filter estimates: flat behavior in measurement band (XX, XZ and YY)

Estimated filters: s = 58

new filter estimates: flat behavior in measurement band (YY)

Estimated filters: s = 76

new filter estimates: slightly flatter behavior in measurement band (all)

New filters suggest that data is more accurate than old filters assume

- especially the low orbit data looses stationarity (higher noise at special locations)
- degradation of "old" filters by non-stationarity
- $\Rightarrow\,$ concentrate on stationary data for filter estimation
- $\Rightarrow\,$ drawback: data which does not agree with filter model are marked as outliers
- ► Do the new filter yield more accurate gravity fields?
- \Rightarrow Case study for the three selected segments

Segment and component solutions

- ▶ red: old solution, green: new solution, solid: difference, dashed: formal errors
- Difference to reference model more or less the same
- Formal errors closer to empirical difference

Segment and component solutions

- ▶ red: old solution, green: new solution, solid: difference, dashed: formal errors
- Difference to reference model more or less the same
- Formal errors closer to empirical difference

- ▶ red: old solution, green: new solution, solid: difference, dashed: formal errors
- Difference to reference model improved for degree 15 80
- Formal errors closer to empirical difference

Segment and component solutions

universität**bonn**

SGG-only gravity field solution from single component & single segment (s = 50, c = ZZ)

- ▶ red: old solution, green: new solution, solid: difference, dashed: formal errors
- Difference to reference model more or less the same
- Formal errors more or less the same

Segment solutions

SGG-only gravity field solution from single segment (s = 50, c = ZZ, XZ, YY, ZZ)

- ▶ red: old solution, green: new solution, solid: difference, dashed: formal errors
- difference to reference model becomes smaller for whole spectrum
- formal errors smaller and more consistent to difference
- ▶ cumulative formal error: deg. $30-200 \rightarrow$ reduction 24%; deg. $30-280 \rightarrow$ reduction 16%
- cumulative empirical error: deg. $30-200 \rightarrow$ reduction 20%; deg. $30-280 \rightarrow$ reduction 9%

Brockmann et al.

EGU2015-12307

16

Segment solutions

SGG-only gravity field solution from single segment (s = 58, c = ZZ, XZ, YY, ZZ)

- ▶ red: old solution, green: new solution, solid: difference, dashed: formal errors
- Difference to reference model becomes smaller for whole spectrum
- Formal errors smaller and more consistent to difference
- cumulative formal error: deg. $30-200 \rightarrow$ reduction 12%; deg. $30-280 \rightarrow$ reduction 8%
- cumulative empirical error: deg. $30-200 \rightarrow$ reduction 10%; deg. $30-280 \rightarrow$ reduction 6%

Brockmann et al.

Vienna, 14.04.2015

EGU2015-12307

Segment solutions

SGG-only gravity field solution from single segment (s = 76, c = ZZ, XZ, YY, ZZ)

- ▶ red: old solution, green: new solution, solid: difference, dashed: formal errors
- Difference to reference model becomes smaller for whole spectrum
- Formal errors smaller and more consistent to difference
- cumulative formal error: deg. $30-200 \rightarrow$ reduction 13%; deg. $30-280 \rightarrow$ reduction 7%
- cumulative empirical error: deg. $30-200 \rightarrow$ reduction 7%; deg. $30-280 \rightarrow$ reduction 5%

Brockmann et al.

Vienna, 14.04.2015

EGU2015-12307

Summary

Gravity field solutions (for individual segments & components) with robustly estimated filters show the remaining potential in GOCE data

- case study has shown: positive effect for lower orbit data
- strong impact when combining components and segments (improved relative weighting due to more realistic formal errors)
- strengths of individual components are better kept in combination
- although less observations are used, no negative effect visible in new solutions, improvements for entire spectrum
- improvements for individual segments in the range of 5 20%

data from 06/2012 to 10/2013 cumulative formal error

deg. 30 – 200: reduction \rightarrow 15% deg. 30 – 280: reduction \rightarrow 11%

- reanalysis of entire mission data seems promising
- effect for nominal data (more stationary) not yet clear
- detailed residual analysis has to be performed
- adjust threshold for outlier detection: e.g. low for filter estimation, higher for gravity field determination (to use more data)
- ► target date for update of EGM_TIM_RL05, probably as EGM_TIM_RL06: **IUGG** Prague
- will additionally include improvements for SST part

Related presentations

- Thu, 16 Apr, 14:45–15:00, EGU2015-10477 Mitigation of ionospheric scintillation effects in kinematic LEO precise orbit determination. Norbert Zehentner and Torsten Maver-Gürr
- Tue, 14 Apr. 17:30–19:00, EGU2015-12092 GOCE gravity field models following the time-wise approach, Jan Martin Brockmann, Eduard Höck, Ina Loth, Torsten Mayer-Gürr, Roland Pail, Wolf-Dieter Schuh, and Norbert Zehentner
- ▶ Fri, 17 Apr, 15:30–15:45, EGU2015-13050 Correlation analysis for long time series by robustly estimated autoregressive stochastic processes, Wolf-Dieter Schuh, Jan-Martin Brockmann, and Boris Kargoll

