

European Geosciences Union General Assembly 2015 Vienna | Austria | 12 - 17 April 2015

Climatology of temperature, salinity and dissolved oxygen in a changing Adriatic Sea

Marina Lipizer¹, A. Crise¹, E. Partescano¹, A. Rabitti², A. Giorgetti¹

¹ OGS - Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste, Italy

² NIOZ - Royal Netherlands Institute for Sea Research, Texel, Netherlands

Motivations

Why climatology

- Baseline to characterize spatial distribution of water properties
- Initial conditions for numerical models
- Quality check for new data

Why the Adriatic

• Well known basin and site of several overlapping human activities **BUT** latest basin scale climatology dates back to early '90s (Zavatarelli et al.,

Why «changing» Adriatic

- Climatology creates an "average" field which is supposed to be stationary.
 - Is this true? Estimate of "uncertainty" to address variability

OGS

Outline:

For: Temperature, Salinity and Dissolved Oxygen

Data

Approximation: •Spatial analysis (DIVA -VIM)

Climatological map

• 26 depth levels • 1/16° resolution

Validation:

- •Real *vs* synthetic T-S comparison
- •Ordinary Crossvalidation

Real vs synthetic T-S diagrams

Ordinary Cross-validation

Climatology-Observation Misfit Uncertainity estimate

Uncertainity map

Data used:

34 research institutes

QC procedures

- Spikes
- Global range check
- Regional range check
 >QF assignement

Results:

- Validated climatology: approximated fields + error map (ex. Salinity)
 - Example of spring climatology of temperature
 - Seasonal climatology of dissolved oxygen

• Error *versus* uncertainty maps

More results are published on:

Lipizer et a., 2014 Qualified temperature, salinity and dissolved oxygen climatoloies in a changing Adraitic Sea. Ocean Sciences

Spring temperature

Dissolved oxygen seasonal climatology

Stronger cyclonic circulation

Differences in the deep layers

0

Error versus uncertainity

Error field associated to Data Interpolating Variational Analysis (DIVA) based on a real covariance function, depends on:

- Noise of data
- Spatial data coverage

 $e^2(r) = \varepsilon^2(r) - \boldsymbol{T_1}(r) \boldsymbol{K}^{-1} \boldsymbol{T_2}(r) \boldsymbol{g}(r)$

 $\mathcal{E}^2(\mathbf{r}) = \text{noise in the } \mathbf{r} \text{ position}$

 T_1 , T_2 = transfer operators

- K = finite elements stiffness matrix
- g(r) = covariance vector in the r position

Uncertainity: Climatology – Observation Misfit

Mean deviation of data from approximated field

$$u_i = \frac{1}{N_i} \sqrt{\sum_{m=1}^{N_i} (d_m - y_i)^2} \{m = 1, \dots, N_i\},\$$

 d_m = original data y_i = value of the approximated field N_i = number of *in situ* data available in the same point

Uncertainity assessment

salinity

Winter - surface dissolved oxygen

Deviation of observations from the approximated field (as %)

- Higher in the North
- Highest in dissolved oxygen
- Clear spatial distribution in salinity

Uncertainity assessment

Winter – surface salinity

Uncertainity assessment: seasons & depth layers

	level	Winter		Spring		Summer		Autumn	
Temperature		Median	95%	Median	95%	Median	95%	Median	95%
	0 m	4.6	18.9	14.9	27.9	5.6	12.5	11.7	27.6
	50 M	۷.۵	9.5	3. ð	9.2	3. ð	9.3	4.8	12.2
	100 m	2.5	7.8	3.1	7.3	3.3	4.2	3.3	8.3
	200 m	1.4	4.9	1.8	4.9	2	5.6	2.2	5.3
Salinity	0 m	0.9	8.4	1.3	8.1	2.1	8.8	1.2	10.2
	50 m	0.3	0.8	0.3	0.9	0.4	0.9	0.3	0.8
	100 m	0.2	0.6	0.2	0.6	0.2	0.8	0.2	0.5
	200 m	0.1	0.4	0.1	0.4	0.1	0.4	0.1	0.4
Dissolved oxygen	0 m	6.1	51.6	6.4	26.3	6	34.3	7	32.9
	50 m	5.9	34.8	4.3	50.8	7.7	39.2	9	51.1
	100 m	11.4	44	3.9	50.7	5	50.7	6.1	51.2
	200 m	14.2	35.7	4.7	50.6	5.6	46.8	18.5	50.9

Deviation of data from approximated field (as %)

- > Higher in the surface for Temperature & Salinity
- \succ higher in spring for T, in summer for S and in autumn for O₂

Conclusions:

- Updated and validated climatology coupled with error and uncertainity information
 - Better resolved features (spreading of freshwaters, differences in the deep waters, winter cyclonic circulation,...)

"Uncertainity": index of areas of strong variability

Thanks for your attention

Acknowledgments:

- All the institutes and the projects for the data used in this research;
- OGS NODC for data management and QC data control;
- GeoHydrodynamics and Environmental Research group (GHER University of Liege) for DIVA analysis software;
- EU FP6 and FP7 Projects SeaDataNet, SeaDataNet II and EMODnet (MARE/2008/03 Lot 3 Chemistry)

Gridded fields and error maps are freely available at: http://nodc.ogs.trieste.it/nodc/metadata/doi doi 10.6092/2b8c0c65-3334-42e9-8551-4495fdfd7fd4

Part of the data is published on:

Ocean Sci., 10, 771–797, 2014 www.ocean-sci.net/10/771/2014/ doi:10.5194/os-10-771-2014 © Author(s) 2014. CC Attribution 3.0 License.

Ocean Science

Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic Sea

M. Lipizer¹, E. Partescano¹, A. Rabitti^{1,*}, A. Giorgetti¹, and A. Crise¹

¹OGS – Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste, Italy *now at: NIOZ Royal Netherlands Institute for Sea Research, Texel, the Netherlands

