Basement-involved thin- and thick-skinned tectonics: case study Alps

Adrian Pfiffner
University of Bern
Basement-involved tectonic styles

The topic: Thick-skinned ⇔ Thin-skinned style

Adrian Pfiffner

EGU 2015
The Problem: Thin basement nappes
Basement-involved tectonic styles

.... overlying thickened continental crust
Basement-involved tectonic styles

Replacement of cover, folded thrust faults

(a) [Image of mountainous terrain]

(b) [Image of mountainous terrain]

NW

Piz la Motta

Piz Grisch

Permian Rolina Porphyry complex

Triassic carbonates

Early Jurassic breccia

Avers nappe (Bandnerschlielens)

Piz Alv

Schams nappe

SE

SSE

Trun submassif

Piz Dadens

Piz Tumpv

Cavisthau

Cavisthau nappe

Permain

L. Jurassic

Triassic

M. Jurassic

Crystalline basement

EGU 2015

Adrian Pfiffner
Internal deformation of basement nappes: Tambo & Adula

adapted from Mayerat-Demarne 1994

based on Berger & Mercolli 2006

Adrian Pfiffner
Basement-involved tectonic styles

Internal deformation of basement nappes: Suretta

Legend

- Cargneule
- Carbonate
- Quartzite
- Permian (Carboniferous?) sediments
- Rofna Porphyry Complex
- Stella Timun mass
- Porphyry, weakly deformed
- Porphyry, L-tectionite
- Gneiss, coarse grained
- "Augengneiss"
- Gneiss, fine grained
- "Augengneiss"
- Porphyry, mylonite

2 km

After Scheiber et al. 2012

Adrian Pfiffner
Internal deformation of basement nappes: Suretta

Adrian Pfiffner
Internal deformation of basement nappes: Bernhard

Bernhard nappe complex East

after Scheiber et al. 2013

Bernhard nappe complex West

EGU 2015

Adrian Pfiffner
Basement-involved tectonic styles

P-T-t paths for retrodeformation of cross-sections

based on compilation by Frey & Ferreiro Mählmann 1999

after Marquer et al. 1994
Basement-involved tectonic styles

Piemont Ocean subducted, Briançon microcontinent enters

Early Paleocene 65 Ma

Adriatic margin

Adriatic continental margin
Austroalpine nappe system
Mesozoic - Cenozoic
Crystalline basement / Upper crust
Lower crust
Oceanic crust

Distal European continental margin
Penninic nappe system
Lower Penninic/Valais Trough
Mesozoic - Cenozoic
Oceanic crust
Crystalline basement / Continental crust
Athenosphere

Middle Penninic/Briançon Rha
Mesozoic
Crystalline basement / Upper crust
Lower crust

Upper Penninic/Piemont Ocean
Mesozoic - Cenozoic
Oceanic crust

Southalpine nappe system
Mesozoic - Cenozoic
Crystalline basement / Upper crust
Lower crust
Lithospheric mantle
Athenosphere

Adrian Pfiffner
Basement-involved tectonic styles

Briançon & Valais cover detached, basement descends

Early Eocene 50 Ma

~400 km convergence

Adriatic continental margin
Austroalpine nappe system

Adula N
Valais
Briançon
Piemont
Adula S

European continental margin
Helvetic nappe system

N

S

100 km

Aar
Gotthard
Lucomagno
Simano shoulder
Adula

Adrian Pfiffner

EGU 2015
Basement-involved tectonic styles

Basement nappes expelled upward

Late Eocene 40 Ma

Adriatic margin

European margin

N

S

Aar
Gotthard
Lucomagno
Simano
Southalpine

Adriatic continental margin
Austroalpine nappe system
Southalpine nappe system

Penninic nappe system

Middle Penninic/Briançon Rise

Upper Penninic/Piemont Ocean

European continental margin
Helvetic nappe system

Mesozoic - Cenozoic
Crystalline basement/Upper crust
Lower crust
Lithospheric mantle
Asthenosphere

Adriatic continental margin
Austroalpine nappe system
Southalpine nappe system

Mesozoic
Crystalline basement

Mesozoic - Cenozoic
Crystalline basement/Upper crust
Lower crust
Lithospheric mantle
Asthenosphere
Basement-involved tectonic styles

Onset of collision by entrance of thick continental crust

Adrian Pfiffner

Oligocene 32 Ma

N European margin

Adriatic margin

S

100 km

~600 km convergence

European continental margin

Adriatic continental margin

Helvetic nappe system

Penninic nappe system

Upper Penninic/Piemont Ocean

Cenozoic magmatites

Bregaglia Pluton

EGU 2015
Basement-involved tectonic styles

Continuing collision: backthrusting, squashing of margins

Early Miocene 19 Ma

~700 km convergence

Adrian Pfiffner

EGU 2015
Basement-involved tectonic styles

Final stage: crustal structure

Adrian Pfiffner

EGU 2015
Basement-involved tectonic styles

Final stage: lithosphere structure

Lithosphere structure after Lippitsch et al. 2003

2

EGU 2015

Adrian Pfiffner
Evaporite layers allow detachment at low temperature and shallow depth.

Deformation of crystalline basement is controlled by quartz rheology, which requires higher temperatures attained at deeper levels.
Basement-involved tectonic styles

Final stage: crustal structure and seismicity

Deep earthquakes in the foreland ↔ shallow earthquakes in the Alps

Pfiffner & Deichmann 2014

EGU 2015