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Abstract

Estimating the past evolution of ice sheets is important for improving our
understanding of their role in the Earth system and for quantifying their
contribution to sea-level changes. Limited but significant paleo data and proxies are
available to give insights into past changes. Meanwhile, models can be used to
provide a mechanistic picture of ice sheet changes. Combined data-model
comparisons are therefore useful exercises that allow models to be confronted with
real-world information and lead to better understanding of the mechanisms driving
changes. In turn, models can potentially be used to validate the data by providing a
physical explanation for observed phenomena. We use an ensemble of simulations
of the Greenland ice sheet (GrlS) to highlight common problems and potential
opportunities in this context.
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Test 1: Eemian interglacial temperature and elevation

Peak Greenland summer temperature anomalies during the Eemian have been
proposed to range from 0.5-6.5 K above today (Bakker et al., 2013; Capron et al.,
2014), leading to a retreat of the GrIS. Meanwhile temperature anomalies at the
NEEM ice core have been reconstructed with a range of 8+4 K, with a
corresponding minimum NEEM ice sheet elevation of -130+300 m below today.

To test our model against this reconstruction, we scaled the peak temperature
anomalies of our hybrid curve to give a range of 1.0-8.0 K, overlapping with both
the model- and NEEM-estimated temperature anomalies.

Result: No combination of climatic forcing and NEEM (upstream) elevation changes
can be simulated that are consistent with the 1-sigma estimates from the
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Test 3: Holocene elevation changes

Vinther et al. (2009) reconstructed elevation changes during the Holocene at four
GrlS ice cores, along with the regional temp. anomaly, which reaches its peak of 2.5
K (4 K in summer) at ~8 ka BP. The central ice cores NGRIP and GRIP enter the
Holocene with elevations higher than today and decline until the present. In our
ensemble, we varied the Holocene and glacial temp. anomalies over a wide range
to see the sensitivity of the model.

Result: Applying the reconstructed temp. anomaly for Greenland results in
unrealistically widespread melting of the ice sheet. Lower Holocene temperature
anomalies provide better agreement, however the timing of growth in the interior
is delayed in the model by ~2 ka.
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reconstruction. Indeed high peak temperatures or small elevation changes are

L , Our model does not simulate shelf ice, nor did we impose a background uplift from
possible in the model, but not both simultaneously.

the deglaciation of the Laurentide. However, the accumulation rate in the model

Simulating the GrlS over the last glacial cycle
& & y fits well with the timing and magnitude of the reconstruction at GRIP. In this
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merged to produce a “hybrid”
estimate of Greenland temperature
anomalies over the last 2 glacial
cycles. The archives were assumed
to give precip-weighted annual
mean temps. Monthly temperature
anomalies were generated by
combining the hybrid curve with
changes in seasonality modeled by
CLIMBER-2. Right: Resulting annual
and summer mean hybrid
temperature anomaly time series
from the hybrid “reconstruction”.

and Holocene
temperature anomalies _
gave better agreement

150 with measurements. - How can important temporal changes in seasonality and their impact on proxies

properly be determined or accounted for?

improve their performance?

What factors are neglected in converting proxies into paleo constraints or
forcing (eg, d'20 => temps; total air content => elevation)?
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Left: Simulated borehole
temperatures at GRIP compared
with measurements. The ensemble
included perturbations in the
130 Eemian, glacial and Holocene
temperature forcing.
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