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Examples of Trial Functions on the Sphere

Trial Functions

Examples of trial functions which are available on the sphere are

Spherical harmonics (ideal frequency localization, no space
localization) click for details

Slepian functions click for details

Radial basis functions (aka reproducing kernel based functions)
click for details

Locally supported functions (very low frequency localization, high
space localization) click for details

return to outline — back to beginning
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Examples of Trial Functions on the Sphere Spherical Harmonics

Spherical Harmonics

Pros:

Established
system with
known physical
interpretation

Efficient
numerical codes
available

Cons:

Instabilities for irregular data grids or
regional approximation

Maximum degree is the only parameter to
control the resolution

Large data sets cause large systems of
equations

Local noise becomes global example

return to trial functions — return to outline — back to beginning
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Examples of Trial Functions on the Sphere Spherical Harmonics

Local noise becomes global

Data are locally perturbed at a cap in the North and we interpolate the
data by spherical harmonics (left-hand) and by radial basis functions
(right-hand). The plots show the approximation errors.

return to spherical harmonics — return to trial functions — return to outline — back to beginning
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Examples of Trial Functions on the Sphere Slepian Functions (due to Simons et al.)

Slepian Functions (due to Simons et al.)

Pros:

Functions can (theoretically)
be calculated for every
arbitrary region

Analysis of regional effects is
easily possible

Cons:

Functions are bandlimited, i.e.
polynomials

Resolution of an eigenvalue
problem required (but with
stable approach for simple
geometries)

return to trial functions — return to outline — back to beginning
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Examples of Trial Functions on the Sphere Radial Basis Functions

Radial Basis Functions

K (ξ, η) =
∞∑
n=0

n∑
j=−n

kn Yn,j(ξ) Yn,j(η) =
∞∑
n=0

kn
2n+1

4π Pn(ξ · η), ξ, η ∈ Ω.

Pros:

Local noise remains local.

Resolution can be locally controlled.

Irregular data sets can be handled
(by using splines).

Multiresolution analysis is possible
(by using wavelets).

Cons:

Splines: large data sets
require solution of large
systems of equations.

Wavelets: quadrature rule
needed, but difficult for
irregular data sets.

return to trial functions — return to outline — back to beginning
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Examples of Trial Functions on the Sphere Locally Supported Functions

Locally Supported Functions

Bh,k(ξ) = (ξ·η−h)k

(1−h)k
· χ[h,1](ξ · η), ξ ∈ Ω variable, η ∈ Ω fixed centre

Pros:

Space-limited functions can
e.g. fade out certain areas

Numerically very easy to
implement

Smoothness can be controlled

Cons:

Spectral properties are
complicated (way out:
up-functions by Schreiner)

No eigenfunctions of typical
geodetic/geophysical
equations

return to trial functions — return to outline — back to beginning
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The Algorithm RFMP

RFMP – A Best Basis Algorithm for Inverse Problems

We search a function F such that FF = y , where y ∈ Rl is given.

Choose a so-called dictionary D of trial functions that might be useful

Iteratively construct an expansion of the unknown signal F as follows:

If

Fn =
n∑

k=1

αk dk

with αk ∈ R and dk ∈ D has already been constructed, then add
another summand

Fn+1 = Fn + αn+1 dn+1

such that the (regularized) data misfit

‖y −FF‖2
Rl +λ‖F‖2

H(Ω)

is minimized.

return to outline — back to beginning
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Numerical Examples Multiscale Approximation of the Potential

Multiscale Approximation of the Potential

We approximate the EGM 2008 potential from irregularly distributed
samples (more data on the continents) with the RFMP (30 000
iterations). The dictionary contains spherical harmonics and localized trial
functions (scaling function and wavelets at regular grid of centres). The
approximation is finally split up into the contributions of different trial
functions (for details, see Michel and Telschow 2014).

coarse to fine
approximation

added details of
scale J = 0, 1, 2

centres of added
wavelets (dots) and
coefficients (colour)

for the results, click here — Example 2 — Example 3 — return to outline —
back to beginning
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Numerical Examples Multiscale Approximation of the Potential

approximation added details centres

We can handle large, irregular data grids and we obtain a
multiresolution analysis! for explanations — outline — beginning
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Numerical Examples Gravity Inversion

Near-surface mass anomalies from EGM2008

density approximation (from degree 3) and centres of chosen RBFs

Example 1 — Example 3 — outline — beginning
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Numerical Examples Mass Transports in the Amazon Area

Water mass transport in the Amazon area in 2008

Example 1 — Example 2 — outline — beginning
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