EPSRC mn

Engineering and Physical Sciences UNIVERSITY OF LEEDS

Research Council

Variational Water Wave Modelling:
from Continuum to Experiment

Anna Kalogirou &  Onno Bokhove

School of Mathematics
University of Leeds, UK

April 17, 2015



Introduction

Water waves: inviscid, incompressible and irrotational

= velocity potential, such that u = V¢.

Variational and Hamiltonian dynamics.

Usual approach: water wave problems governed by
autonomous Hamiltonian dynamics.

Practically: time-dependent internal or boundary conditions

= non-autonomous dynamics: explicit time-dependence via
forcing or dissipation.




Objectives

Derive reduced water wave model [Benney & Luke, 1964].
Remain entirely within a variational framework.
Obtain numerical simulations via finite element formulations.

Compare against a soliton splash event in a wave channel with
a removable sluice gate and a contraction [Bokhove et al., 2011].
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e Can be derived from Luke's variational principle [Luke, 1967]
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Scalings

/
H, 0

3 length scales:
e qq: typical amplitude
e /y: typical wave length
e Hjy: water depth at rest



Scalings

B
¢
H, 0
z=0
3 length scales: 2 parameters:

e qq: typical amplitude e Small wave amplitude
e (o typical wave length e=ag/Ho <1
o Hy: water depth at rest e Long-waves in shallow water

p=(Hy/l)? < 1



Asymptotic expansion

e Rescale the problem by introducing non-dimensional variables.

e Potential at bottom
@(ilf, Y, t) = ¢($, Y,z = Oa t)'
e Expand ¢ about @ in powers of p: [Pego & Quintero, 1999]
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Asymptotic expansion

Rescale the problem by introducing non-dimensional variables.

Potential at bottom

D(z,y,t) = ¢p(z,y,z = 0,1).
Expand ¢ about @ in powers of p: [Pego & Quintero, 1999]
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Asymptotic expansion

Rescale the problem by introducing non-dimensional variables.

Potential at bottom

D(z,y,t) = ¢p(z,y,z = 0,1).
Expand ¢ about @ in powers of p: [Pego & Quintero, 1999]
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Benney-Luke equations
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Benney-Luke equations
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e Explicit time-dependence
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Challenges:
e Explicit time-dependence = gravitational potential ng(z, )

e Reduction of highest derivative order = auxiliary variable
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Modified Benney-Luke equations

0P — %atms + % VO +n—nr =0
o — gatAn +V-((1+en)VP) + pAg=0
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Challenges:
e Explicit time-dependence = gravitational potential ng(z, 1)

e Reduction of highest derivative order = auxiliary variable
=—2Ad
9= 73



Soliton splash experiment
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Wavetank length Ly =43.63£0.1m
Wavetank width Ly=2m
Wavetank height H=12m
Contraction length d=27m
Location of sluice gate ly =2.63 m
Rest water level (high) hi =09 m
Rest water level (low) ho =0.43 m

Sluice gate release speed V; ~ 2.5 m/s
Sluice gate removal time Ty = h/V,; ~ 0.36 s




Removable “sluice gate”

h1 — Hy(t) if v <y

nr(z,t) = { (hy — Ho(t)) (1 - x%f) if 11 <<

0 if x> xo,

hy+ (ho — h) B for t < T,
Ho(t):{ 1+ (ho — ha)== for

h1 for t > Tk.
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Numerical Implementation

. An automated system for the solution of PDEs
& Firedrake sing the Finite Element Method (FEM).

¢ Continuous Galerkin Finite Element Method (CGFEM).
e Quadrilateral mesh with quadratic Lagrange polynomials.

e Symplectic 2nd- or 3rd-order time integrators.



Numerical Implementation

— Wave ampitude (m)

Time: 0.000s




Experiment vs. Simulation

t=8.16 s

n(z,y)
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Experiment vs. Simulation

t=15£0.5s t=15.27s




Bore-soliton splash Experiment
If hg = 0.41 m instead of hg = 0.43 m = A0 ~ 10A40!




Future Work

e Apply Benney-Luke approximation to
flows in vertical Hele-Shaw cells —
damping, forcing and surface tension.

e Explore variational water wave
methods for ships in modest to heavy
seas — water wave dynamics coupled
to water line and ship dynamics.




Conclusions

e Mathematical modelling of variational water wave dynamics.
e Reduced weakly nonlinear model for shallow and long waves.

e Time-dependent gravitational potential mimicking a
removable “sluice gate”.

e Discretised the model using finite element methods.

e Validation: soliton splash event in wave tank with a sluice
gate.

[Bokhove O. and Kalogirou A., 2015. Lecture Notes,
London Mathematical Society. (Submitted)]




