Modern view of Western Mediterranean hydrography
Outline

- Introduction
- Warming and salinification
- The Western Mediterranean Transition
- WMT propagation
- Abyssal mixing in the WMED
- Ship-based hydrography
- Conclusions
Introduction

“Miniature ocean”

Deep water formation varying on interannual time scales
Well defined overturning circulation
Distinct surface, intermediate & deep water masses circulating between W and E

Useful for climate change studies

Much shorter time scales than the global ocean (60 yrs turnover vs 500 yrs)

Laboratory for:

- documenting changes within it → anticipate similar changes in the global ocean
- understanding the role of key processes involved in climate change → inferences on those processes on the global scale
Introduction

Concentration basin
higher salinity than the outer ocean due to evaporation exceeding precipitation
Surface inflow of fresher water and subsurface outflow of saltier water
Introduction

In the North western Mediterranean Sea shelf and open sea convection occasionally occurs, generating new deep waters:

- atmospheric cooling
- general cyclonic circulation

Schroeder et al., 2012

Puig et al., 2013
1950-2010: below 1000 m the Mediterranean underwent the strongest salinity gain anywhere in the world ocean

→ “Mediterranean signal” clearly imprinted in the N-Atlantic

Skliris et al., 2014
Warming and salinification

The deep waters of the WMED became gradually saltier and warmer for at least the past 40 years

- 0.015 and 0.04 °C per decade!

<table>
<thead>
<tr>
<th>Year</th>
<th>Salinity</th>
<th>Pot. temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>38.406</td>
<td>12.766</td>
</tr>
<tr>
<td>1975</td>
<td>38.431</td>
<td>12.822</td>
</tr>
<tr>
<td>1995</td>
<td>38.452</td>
<td>12.879</td>
</tr>
<tr>
<td>2004</td>
<td>38.477</td>
<td>12.966</td>
</tr>
</tbody>
</table>

From Borghini et al., 2014
Western Mediterranean Transition

Enhanced thermohaline variability during WMT

Features occurring in the last 10 yrs not previously observed to this extent:

1. the **filling up** of the WMED with **new anomalous dense water**
2. a significant and **stepwise warming, salinification, densification** and **ventilation** of deep waters
3. a **warming and salinification** of the **thermocline/halocline** between the intermediate water and the new deep water
4. a substantial **modification of deep θS diagrams**, with the appearance of complex hooks and inversions
5. a **new stratification** prone to different **double diffusive mixing** regimes
6. potential **modification of the MOW** (Mediterranean Outflowing Water)
7. a **perturbation of the deep Tyrrhenian** Sea, due to the propagation of these anomalies through the Sardinian Channel
Western Mediterranean Transition

- Since 2004 increases in deep water T and S were **2 times faster** than during 1961-2004
- Winter 04/05 sets the **beginning of WMT**: exceptional DWF changed basic structure of the IL and DL

Borghini et al., 2014
Western Mediterranean Transition

Salinity

Dissolved oxygen

section > 1500 m
- **2008**: new WMDW has been sucked by Bernoulli aspiration to much shallower depths in the Alboran Sea (in the Algerian Sea the same isopycnal was found 1 km deeper)
- westward flow along the Moroccan continental slope → anticyclonic Alboran gyre throughout the water column.

- **2010**: new WMDW within the strait at 5.46 °W; no signature 20 km further west
- The equilibrium depth of MOW in the Atlantic could change

\[\sigma > 29.108 \text{ kg m}^{-3} \text{ (higher than } \sigma \text{ of old WMDW)} \]

\[\sigma > 29.11 \text{ kg m}^{-3} \]
WMT propagation to the east

- **2005**: only the “classical” old WMDW was found
- **2006-07**: first signatures of the new denser WMDW
- **2009**: first signature along the trench axis in the Sardinia channel
- **2010**: first signature inside the Tyrrhenian (335 m thick)
- **2010-2014**: whole layer below LIW (> 500 m), has densified > 29.11-29.12 kgm⁻³ → denser than the “classical” resident deep water
 → WMT signature is well evident in the whole basin: deep ventilation

- nWMDW dense enough to cascade down to the bottom of the Tyrrhenian and ventilate it (> 3 km)
- Tyrr has higher resident heat and salt contents: negative jump in T-S
- different stratification than in the WMED: **salt fingers** → efficient downward mixing of T and S
Abyssal mixing in the WMED

- Assess **mixing levels** associated to WMT
- First **distribution maps** of TKE and vertical diffusivities in the deep WMED
- Identify **sources of turbulence** (tide, wind and topography)

Dissipation rates (vertical mean > 100 dbar)

- **weak** $\langle \varepsilon \rangle$ (0.5-1 x 10^{-10} Wkg^{-1}) in deep sea
- slight intensification (up to 1-5 x 10^{-10} Wkg^{-1}) along coastal slopes
- enhanced values (10^{-9} to 10^{-7} Wkg^{-1}) in channels \rightarrow turbulence hotspots
Abyssal mixing in the WMED

Deep Tyrrhenian Sea → extremely low dissipation values

- **quasi-permanent thermohaline staircases** (salt finger mixing)

- VMP measured similar **dissipation of turbulent kinetic energy** ε (very weak, $<10^{-10}$ W kg$^{-1}$) in layers and steps

- strong differences for **dissipation of temperature variance**: χ is higher by 2-3 orders of magnitude in the steps as compared to the layers

Mixing occurs mainly by **diffusion** of properties, and the **turbulent** component is nearly absent
Ship-based hydrography

Sustained ship-based monitoring gave insights into the spreading of the new deep water from its formation region into the WMED interior, towards Gibraltar and the Tyrrhenian Sea.
Ship-based hydrography

An important component of a suitable monitoring strategy should rely on regular ship-based surveys, to provide data over the entire water column (more than 20% of Mediterranean volume is deeper than 2000 m)

Ship-based component of the observing system in the Mediterranean is not yet as well defined as other component

Global hydrographic surveys since the 70s (GEOSECS, WOCE / JGOFS, CLIVAR, GOSHIP)

The Mediterranean Sea was not included
Ship-based hydrography

Primary objectives for the Med-SHIP repeat hydrography

(1) to observe long-term changes in physical and biogeochemical properties
(2) to observe changes in the thermohaline circulation

Med-SHIP is a CIESM initiative, www.ciesm.org
Conclusions

- Mediterranean is a **climate change hot spot**: we expect a continuation of the **warming** and **salinification** process in the WMED
 - MOW properties and outflowing depth may **change**

- A **salty – warm** anomaly in the WMED produced a **fresh – cold** anomaly in the Tyrrhenian Sea, triggering its **deep ventilation**
 - The Tyrrhenian will continue to be **ventilated** at the bottom

- **WMT** induced different **mixing regimes** in different **layers** of the water column and in different **areas**

- First **direct mixing measurements** in the deep WMED
 - The Tyrrhenian is an end-member of **extremely low dissipation values**

- **Med-SHIP** should become part of the GOOS as a reference component for **long term studies of processes, events and changes** in the Mediterranean.
Acknowledgement

EGU council members for this award

Prof. Harry Bryden for the nomination and scientific support

The Ocean Observation and Climate Research Team at CNR ISMAR: Jacopo Chiggiato, Mireno Borghini, Simona Aracri, Gian Pietro Gasparini, Stefania Sarnocchia, Anna Vetrano, Sara Durante, Carolina Cantoni et al.

Other collaborators: Sana Ben Ismail, Cherif Sammari, Bruno Ferron, Pascale Bouruet-Aubertot, Toste Tanhua, Marta Alvarez, Simon Josey et al.

My husband, my “big” son and my little twins