Finding Real Magma

and real peace through tsunamis and eruptions
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A personal note

This unexpected award caused me to look into
the career of Sergey Soloviev.

 He was at the forefront on the theory, risk
assessment, and direct monitoring of
tsunamis.

 He was a champion of international
collaboration.

Following his lead:

* | will talk about the need for direct
monitoring of magma and the continued
importance of Russia — United States
collaboration.
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About magma and kinds of knowledge

* In evaluating volcano hazards and forecasting eruptions, what if we
knew the location and conditions of storage of magma?

* Thereis a big difference between consensus — we agree where
magma is - and real knowledge — we know where magma is.

Analogies

Seismic inference vs. seafloor pressure detection of tsunami wave.
Seismic inference vs. drilling confirmation of oil & gas reservoir.

Importance

When huge assets are at risk, money or human life, real knowledge is
required.




What if we knew where magma is located
under a volcano and its current state?

e Such information would
transform volcanology.
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What if we knew where magma is located
under a volcano and its current state?

e Such information would
transform volcanology.

We don’t know this
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What we “know” now

Seismic anomalies (velocity, attenuation, reflections,
shadowing, microseismicity): can be aqueous fluids, partial
melt, non-magmatic discontinuities

E&M anomalies: can be hydrothermal alteration,
hydrothermal fluids, certain rock types

Gravity anomalies: magma and other rock bodies can be
either positive or negative anomalies

Deformation: non-unique; can also be caused by fluids

Petrology: large error bars on phase-equilibrium
geobarometry and geothermometry; melt inclusion data
noisy — they may not trap representative melt and can leak;
what is erupted may not be representative of what is in the
subsurface




Real knowledge about magma

* Drilling technology has advanced to the point
that we can, and have, drilled into magma.

* |t is demonstrated that we can core magma
and thinkable that we can measure intensive
parameters within magma in situ.



Why have volcanologists not already
done more?

* Because we are accustomed to accepting
inference as knowledge.

* Because real knowledge about magma requires a
project scale unprecedented in volcano hazards
science, with no guarantee of success.

Perhaps it was the same for tsunami hazard science
in the ‘70s?
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McBirney, 1980
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Campi Flegrei Caldera, Italy:

Why magma chambers matter to people




Inversion of P-wave velocity and gravity at Campi Flegrei
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Inversion of P-wave velocity and gravity at Campi Flegrei
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Inversion of P-wave velocity and gravity at Campi Flegrei

From A. Zollo and
co-workers
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g AnaRhca Periods of high injection rate
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Campi Flegrei, Italy, 1980-2008

From: Chiodini et al., 2008.

With a million people at risk, we need to know more than we get
from surface proxies of magma behavior
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Magma Chamber Pressure (Mpa)

Campi Flegrei, Italy, 1980-2008

From: Chiodini et al., 2008.

Suppose we could put sensors in magma chambers?

Magma Temperature (°C)



Krafla Caldera:

| Where magma has been drilled

Perspective is NE towards ocean




Approximate caldera outline
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Surprises concerning Krafla magma

* Not detected by geophysical techniques

* No possibility it was recently intruded despite
low crystallinity

* Rhyolite, but rhyolite has not been erupted in
the last 9000 years

* High permeability of margin, despite T >>
brittle/ductile transition



Location of magma body
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Possible origins of magma body

Emplaced before 1975-1984
Krafla Fires

Emplaced after Krafla Fires

Differentiation in situ

Possible; Why did it not erupt?
Why still at liquidus? See Askja

Not possible: Precluded by
geodetic and gravity data

Remarkable, but consistent
with no geodetic or gravity
signal
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F16. 16. A model of the Askja magma chamber before and during the 1875 eruption.

Askja Caldera analogy

A similar shallow body of
rhyolitic magma apparently
accumulated for thousands
of years, undisturbed by
basaltic eruptions until 1875.



A 30-m thick mystery zone spanning the solidus ToC

P. Schiffman et al / Geothermics 49 (2014) 42-48
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Fig. 1. Location map of the Krafla geothermal area and schematic lithologic columa
of the IDDP-1 borehole below 1960 m. The relationship between mafic and felsic
intrusive lithologies between 2000 and 2070m is not well constrained,
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P. Schiffman et al. / Geothermics 49 (2014) 42-48
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Petrology of magma margin

Simplest,
: traditional
| Subsolidus .
felsite view
No returns

Crystallizing
margin

Chips after bit unstuck:
Pure rhyolite melt +
hypersolidus felsite

Zierenberg
et al, 2012



Petrology of magma margin
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Absence of crystallizing
rhyolite requires magma to be
superheated




Where is the partially crystallized
rhyolite? Crystallization of rhyolite
should accompany melting of felsite.
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Another possible magma margin
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And another magma margin

Subsolid
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mush

No returns

Melt ooze

Chips after bit unstuck:
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We need core!

Kilauea Iki Lava Lake

Magma quenched in situ
and then sampled
preserves original phase
assemblage and volatile
content.

Drill pipe
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Mass/heat transfer from/to magma body

Sustained power output due to
moving conductive boundary
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Ts

Consequences of eutectic behavior for
crystallization and heat capacity as a
function of temperature
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We can define an effective C,,

Cp. - Cp . 5 (AXs)( AT)-:LS

2>

Large amount of heat released at the
advancing solidus, into the thin
conductive zone
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Moving conductive boundary
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Steps in developing scientific drilling project:
Krafla Magma Drilling Project
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For the long-term future:

International Magma Laboratory
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Decades of progress: from Soloviev’s
experiment to global application
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Why is international cooperation
important in natural hazards science
and risk management (besides $)?

* Because extreme events are rare events, we must
draw on the broadest experience possible.

e Because natural hazard events transcend borders.

* Because we can use multiple approaches to advance
the science faster and identify best practices in
management

Also: The issue is humanitarian and apolitical.



Why is cooperation between Russia
and the US especially important?

e Because friends don’t bomb friends

NUCLEAR WEAPONS: U.S., RUSSIA LEVELS VS. THE REST OF THE WORLD
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The post-bipolar world
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Let’s talk about
climate change.

Banksy

Can we maintain a discussion about more than one dire threat to humanity?



U.S.-RUSSIA

BILATERAL PRE DENTIAL COMMISSION

The line of cooperation has broken.




Joint monitoring of volcanic ash clouds
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International Volcanological Field School

Kamchatka



Partners in International Volcanological
Research and Education (PIRE)

Bezymianny Mount St Helens



How can we do better at mitigating
risk and enhancing resilience?
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Working groups most relevant to natural hazards
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Natural Hazards Science Subworking Group (including
volcanoes, earthquakes. tsunamis. floods and wildfires)

Science and Technology

The Science and Technology Working Group agreed to develop cooperation in

nanotechnology, IT, and climate monitoring as well as discuss obstacles to science
cooperation, including tax, customs, and visa issues.




Agencies and institutions who were involved
in the natural hazards initiative

United States Russia

« USGS e MES

* FEMA « EMERCOM

« NOAA * RAS

 NASA e RosHydroMet

e Universities e Universities



Agencies and institutions who are involved
in the natural hazards initiative

United States Russia
 USGS * MES

* FEMA * EMERCOM

* NOAA * RAS

e NASA e RosHydroMet
* Universities * Universities

We need to put the partnership back together!




Conclusions

* We should be bold about
pioneering new
measurements, especially
where human life is
involved.

 We should be bold about
forging international
partnerships, especially
where human life is
involved.
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