Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies L. Hoffmann¹, C. M. Hoppe², R. Müller², G. S. Dutton³, J. C. Gille^{4,5}, S. Griessbach¹, A. Jones⁶, C. I. Meyer¹, R. Spang², C. M. Volk⁷, K. A. Walker^{6,8}

¹Forschungszentrum Jülich, Jülich Supercomputing Centre, Jülich, Germany; ²Forschungszentrum Jülich, Institut für Energie- und Klimaforschung, Jülich, Germany ³NOAA Earth System Research Laboratory, Global Monitoring Division, Boulder, CO, USA; ⁴National Center for Atmospheric Research, Boulder, CO, USA ⁵Center for Limb Atmospheric Sounding, University of Colorado, Boulder, CO, USA; ⁶Department of Physics, University of Toronto, Toronto, Canada ⁷Bergische Universität Wuppertal, Fachbereich Physik, Wuppertal, Germany; ⁸Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada l.hoffmann@fz-juelich.de

- global warming and ozone depletion potentials.
- from three satellite climatologies (ACE-FTS, HIRDLS, and MIPAS).
- port model into a climate model (Hoppe et al., 2014).
- the zonal mean CFC-11 and CFC-12 climatologies:

- scales the ratio of lifetimes is given by

$$\frac{\tau_1}{\tau_2} = \frac{B_1}{B_2} \frac{d\chi_2}{d\chi_4} \frac{C_2}{C_4}$$

- Brown et al., 2013).

Comparison of CFC-11/CFC-12 lifetime ratios

• Th CFC-11/CFC-12 lifetime ratios and CFC-12 lifetimes (based on a reference lifetime of 52 yr for CFC-11) found in this study are in good agreement with other work:

e	Method	τ (CFC-11)	τ (CFC-12)	Ratio
		[yr]	[yr]	
	rel	52	112^{133}_{96}	$0.47_{0.39}^{0.54}$
	rel	52	113_{97}^{134}	$0.46_{0.39}^{0.54}$
	rel	52	114_{98}^{136}	$0.46_{0.38}^{0.53}$
aMS	rel	52	110^{129}_{95}	$0.48_{0.40}^{0.55}$
	both	52 <mark>67</mark> 43	102^{122}_{88}	$0.51_{0.35}^{0.76}$
	rel	52	131^{161}_{110}	$0.40_{0.32}^{0.47}$
ults	abs	55	95	0.58
а	rel	52	87 <mark>97</mark> 77	$0.60_{0.54}^{0.67}$
ults	abs	58	—	—
	abs	46^{65}_{36}	105 ¹³⁹	$0.44_{0.26}^{0.77}$
	abs	—	108^{140}_{88}	—
	abs	53 ⁷⁵ 41	—	—
	abs	61 ⁸⁶ 47	—	—
	abs	36^{50}_{28}	108^{151}_{83}	$0.33_{0.19}^{0.60}$
	abs	45 ⁵⁸ 36	107^{130}_{90}	$0.42_{0.28}^{0.64}$
	abs	54 <mark>61</mark> 48	111_{95}^{132}	$0.49_{0.36}^{0.64}$
RL	abs	52^{61}_{45}	112^{136}_{95}	$0.46_{0.33}^{0.64}$
	both	45	100	0.45
ults	abs	60^{64}_{56}	106^{110}_{101}	$0.57_{0.51}^{0.63}$
а	abs	41 ⁵³ 29	77^{103}_{51}	$0.53_{0.3}^{0.76}$
	rel	52	99 ¹¹² 87	$0.52_{0.45}^{0.59}$

• Having smaller uncertainties than the results from several other recent studies, our estimates can help to better constrain CFC-11 and CFC-12 lifetime recommendations in

• Closely reproducing the satellite data, the new EMAC/CLaMS model will likely become a useful tool to assess the impact of advective transport, mixing, and photochemistry as well as climatological variability on the stratospheric lifetimes of long-lived tracers.

References

Hoffmann, L., Hoppe, C. M., Müller, R., Dutton, G. S., Gille, J. C., Griessbach, S., Jones, A., Meyer, C. I., Spang, R., Volk, C. M., and Walker, K. A.: Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite

Hoppe, C. M., Hoffmann, L., Konopka, P., Grooß, J.-U., Ploeger, F., Günther, G., Jöckel, P., and Müller, R.: The implementation of the CLaMS Lagrangian transport core into the chemistry climate model EMAC 2.40.1: application on age of air and transport of long-lived trace species, Geosci. Model Dev., 7, 2639-