Ocean Dynamics Simulation during an Extreme Bora Event using a Two-Way Coupled Atmosphere-Ocean Modeling System

Matjaz Licar (1), Peter Smerkol (1), Anja Fettich (1), Michalis Ravdas (3), Alexandros Papapostolou (3), Annetta Mantzafou (3), Jure Cedilnik (2), Benedikt Strajnar (2), Maja Jeromel (2), Nebojša Pristov (2), Jure Jernej (2), Saso Petan (2), Vlado Malacic (1) and Sarantis Sofanos (3)

(1) Marine Biology Station, National Institute of Biology, Slovenia, (2) Slovenian Environment Agency, Slovenia
(3) Physics And Modelling Group, University of Athens, Greece

Abstract

The response of the Adriatic Sea to cold north-easterly Bora wind blowing has been modelled using a two-way coupled atmosphere-ocean coupling approach. We compare the performance of a fully two-way coupled atmosphere-ocean coupling model and b) one way coupled ocean model (forced by the atmospheric model) hourly output to the available in-situ measurements (buoy Vida, the CTD). The models used were ALADIN (4.4 km resolution) on the atmospheric side and ADRIPOM (1/10 x 1/10 degree resolution) on the ocean side. The atmosphere-ocean coupling was implemented using the OASIS3-MCT model coupling toolkit. We show that the atmosphere-ocean two-way coupling significantly improves the simulated surface conditions and the oceanic response since it captures the short-term transient features better than the offline version of the ocean model. On the other hand the coupled system overestimates the wind gusts, leading to overcooling in the shallow region.

Models and OASIS-MCT3 coupling setup

The coupling scheme, depicted on Figure 1, connects two models and two pseudo-models with domains shown on Figure 1. ALADIN, ADRIPOM, pseudoMFS and pseudoMERGER are treated by OASIS as independent separate models exchanging data at prescribed timesteps. ALADIN - Atmospheric model is solved using the MERGER pseudo-model and sends SST fields to the ALADIN model. ADRIPOM - Adatpheric model ocean model, receives mean sea-level pressure, air temperature, precipitation, wind speed (u and v directions), humidity, solar and longwave downward radiation fields to the POM model. EC-WRF boundary conditions are provided every three hours. Initial conditions of the ALADIN model are provided by local data assimilation using 3-hourly 3D-Var using surface observations, radiosondes, atmospheric motion vectors, AMDAR aircraft observations and satellite radiances (MSG, NOAA, Metop).

- ADRIPOM – Adatpheric model ocean model, receives mean sea-level pressure, air temperature, precipitation, wind speed (u and v components), humidity, solar and longwave downward radiation fields from the ALADIN model and sends the computed SST field to the MERGER pseudo-model. ADRIPOM uses MFS lateral boundary conditions and is restartted every 24 hours.

- pseudoMFS - a pseudo-model of the Mediterranean, which initializes ADRIPOM and during runtime reads daily SST fields from the MyOcean MFS model NetCDF files (Tonani et al., 2009), and sends them to the MERGER pseudo-model. These SST fields are updated every 24 hours of coupled system runtime.

- pseudoMERGER - a pseudo-model, which receives the SST fields from ADRIPOM (in the Adriatic) and pseudoMFS (in the Mediterranean), merges them on a common mask and sends the merged SST field to the ALADIN model. Merger is needed because ALADIN domain extends beyond ADRIPOM domain into the Mediterranean (see Figure 1).

Coupling physics in ADRIPOM and heat flux corrections

In POM we use standard bulk formulas for heat flux parametrizations (symbol names are as commonly used). Net longwave heat flux through the ocean surface is thus:

\[Q = \text{emiss} \cdot \sigma T^4 \]

Where emiss stands for sea-surface emissivity and \(T \) is net longwave downward heat flux, obtained via OASIS from ALADIN. Sensible heat fluxes are computed using the Kondo schemes:

\[Q_s = \rho_{o_1} C_p \frac{\Delta T}{\Delta t} \]

\[\Delta T = \frac{1}{C_p \rho_o} \left(T_1 - T_2 \right) \]

Latent heat fluxes are computed following Buydko:

\[Q_L = E \cdot \left(z + \beta T \right) \]

Net upwards heat flux through the ocean surface amounts to:

\[Q = Q_s + Q_H + Q_E \]

Coupled system was exhibiting systematic overcooling by an amount which was found to be correlated with the local ocean depth (Figure 3). We thus introduced, during each coupling timestep, a heat flux correction, depending on ocean depth alone:

\[Q' = Q + \frac{\theta(Q)}{S(T)} \]

The depth dependence of the SST error \(S(T) \) was obtained from comparisons between modeled SST (from a different numerical experiment) and satellite SST measurements. Initial ocean temperature was warmed up in accordance with satellite SST measurents during the first step to provide a better estimate of initial conditions. The obtained results are promising, as shown in Figures 4 and 5.

Case Study: extreme Bora event in February 2012

In February 2012 an two-week long episode of hurricane strength Bora wind occurred in the north and middle Adriatic, leading to extreme air-sea interactions, severe water cooling and extensive dense water formation. Several measurement campaigns were performed throughout the event, making it a perfect candidate for verification of our coupled system behaviour. We performed a 5 month (January-June 2012) coupled model run, and compared the model to the in-situ measurements at a coastal buoy Vida located in the south of the Gulf of Trieste (45.53 N, 13.56 E). The results are shown in Figures 4, 5 below.

Figure 1. Coupled model domains.

Figure 2. OASIS-MCT3 model coupling scheme.

Figure 3. Time-averaged SST differences between ADRIPOM and satellite observations.

Figure 4. Comparison of CTD measurements versus modeled density anomaly

Figure 5. Comparison of observed sea temperature at 2m depth at buoy Vida location (blue curve) with coupled ADRIPOM with flux and initial condition corrections (POMc, black curve), without any corrections (POMc, green curve) and uncoupled POM (POMu, red curve). Coupled system captures the transient features well but overestimates the net upward fluxes, leading to overcooling in ADRIPOM as well as ALADIN.

Contact: matjaz.licer@mbss.org

References

