Ying Li<sup>1</sup>, Junling An<sup>1</sup>, Mizuo Kajino<sup>2</sup>, Jian Li<sup>1</sup>, Yu Qu<sup>1</sup> 1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Physics, Chinese Academy of Sciences, Beijing, China (living-iap@mail.iap.ac.cn) 2. Meteorological Research Institute, 1-1 Nagamine, Tsukuba 305-0052, Japan

#### I. Introduction

Reactive nitrogen-containing compounds (NO<sub>v</sub>) are involved in many important chemical processes in the atmosphere, including aerosol and ozone (O<sub>3</sub>) formation (Kondo et al., 2008). HONO, an important component of  $NO_v$ , is a significant precursor of the hydroxyl radical (OH) that drives the formation of  $O_3$  and fine particles (PM<sub>2.5</sub>). Unknown HONO sources and their potential impacts on air quality have gained extensive interests (Li et al., 2015a and references therein) but to our current knowledge, the impact of HONO sources on regional-scale deposition of individual NO<sub>v</sub> species has not been quantified up to date. In this study, we will evaluate the effects of three additional HONO sources on concentrations and deposition of individual NO<sub>v</sub> species as well as the NO<sub>v</sub> budget over the Beijing-Tianjin-Hebei (BTH) region of China during summer and winter periods of 2007.

#### II. HONO parameterization

Considered are the three additional HONO sources:

(1)  $NO_2^* + H_2O \rightarrow HONO + OH$  (the  $NO_2^*$  chemistry), the rate constant is estimated as  $9.1 \times 10^{-14}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup> (Li et al., 2008).

(2)  $2NO_2+H_2O \rightarrow HONO+HNO_3$  (the Het), the rate constant is given by Jacob (2000):

$$k = \left(\frac{r_p}{D_g} + \frac{4}{u\gamma}\right)^{-1} S_a$$

*k*: first-order rate constant  $r_{p}$ : particle radius  $D_{\alpha}$ : diffusion coefficient as 10<sup>-5</sup> m<sup>2</sup> s<sup>-1</sup>  $\gamma$ : uptake coefficient as 10<sup>-4</sup> *u*: mean molecular speed  $S_a$ : aerosol surface area per unit volume of air

(3) HONO emissions (*the Emis*) included direct emissions estimated as 0.8% of NO<sub>x</sub> emissions and 2.3% of the NO<sub>x</sub> emitted in diesel exhaust converted to HONO via heterogeneous reaction with semi-volatile organics. HONO/NO<sub>x</sub> is  $\sim$ 1.18% in Beijing (Li et al., 2011).

# III. Model set-up and observation data

The Weather Research and Forecasting/Chemistry (WRF-Chem) model Version 3.2.1 with the CBM-Z gas phase chemical mechanism and the MOSAIC aerosol module was chosen. Three nested domains are employed with Domain 3 covering the BTH region (Fig. 1).



Measurements of  $NO_x$ , peroxyacyl nitrates (PAN), HONO, HNO<sub>3</sub>, NO<sub>3</sub><sup>-</sup>, and total gas-phase NO<sub>v</sub> (NO<sub>va</sub>) were conducted at Peking University as part of the Campaign of Air Quality Research in Beijing (CAREBeijing-2007, Liu et al., 2010).

Table 1: Design of WRF-Chem simulations.

| Case ID       | HONO sources included in the WRF-Chem simulations                   |  |  |  |  |
|---------------|---------------------------------------------------------------------|--|--|--|--|
| Case R        | Reference case with HONO gas-phase production from OH and           |  |  |  |  |
| Case $NO_2^*$ | Case $R + NO_2^*$ chemistry                                         |  |  |  |  |
| Case Het      | Case R + NO <sub>2</sub> heterogeneous reaction on aerosol surfaces |  |  |  |  |
| Case Emis     | Case R + HONO emissions                                             |  |  |  |  |
| Case E        | Enhanced case with all the three additional HONO sources            |  |  |  |  |

The additional HONO sources decreased NO<sub>x</sub> concentrations while increased HONO, HNO<sub>3</sub>, NO<sub>3</sub>, and PAN. Overall, NO<sub>ya</sub> NO concentrations are decreased by 6%–10% in large areas (Fig. 3). The NO<sub>2</sub> heterogeneous reaction is the largest contributor to the concentration changes of NO<sub>v</sub>. The impacts of the additional HONO sources on NO<sub>v</sub> concentrations are larger in winter than in summer (Li et al., 2015b). The concentration changes of the individual  $NO_v$ species (Fig. 3) are partially because of the OH enhancements due Acknowledgements: The research was supported by the Beijing to the additional HONO sources (Fig. 4). Municipal Natural Science Foundation (Grant No. 8144054).

# Impacts of Additional HONO Sources on Concentrations and Deposition of NO<sub>v</sub> in the Beijing-Tianjin-Hebei Region of China

# **IV. Impacts on concentrations of NO<sub>v</sub> species**



Figure 2: Comparison of observed and simulated (a-d) 24-h averages of NO<sub>2</sub>, HNO<sub>3</sub>, NO<sub>3</sub><sup>-</sup> and HONO during 2~31 August 2007 and (e-h) diurnal averages of HONO, PAN, NO and NO<sub>vg</sub> during 10~30 August 2007. Observations at Peking University in Beijing were from Liu et al. (2010). The relative concentration changes due to the three additional HONO sources are also shown in red lines.



Figure 3: Monthly-mean concentration changes of (a) HONO, (b) NO, (c)  $NO_2$ , (d)  $N_2O_5$ , (e)  $HNO_3$ , (f)  $NO_3^-$ , (g) PAN, and (h)  $NO_{vg}$  over the BTH in August 2007 due to the additional HONO sources (Case  $\tilde{E}$ ).



Figure 4: Simulated monthly-mean (a) OH concentrations in Case R and (b) OH enhancements due to the additional HONO sources (Case E) in August 2007.



Figure 5: Simulated (a~f) dry deposition of NO<sub>x</sub>, HONO, HNO<sub>3</sub>, NO<sub>3</sub><sup>-</sup>, PAN, and the total N in NO, in August 2007 from the reference run (Case R) and (g~l) percentage changes due to the additional HONO sources (Case E).

The additional HONO sources decreased NO<sub>x</sub> dry deposition while increased dry deposition of HONO, HNO<sub>3</sub>, NO<sub>3</sub>, PAN and the total N in NO<sub>v</sub> (NO<sub>v</sub>-N) (Fig. 5). Changes in the dry deposition of NO<sub>v</sub> species correspond to their concentration changes (Fig. 3). The dominant contributor to the changes of NO<sub>v</sub> dry deposition is the  $NO_2$  heterogeneous reaction. The impact on  $NO_2$  dry deposition in The total deposition of  $NO_v$  is increased by 1.4 Gg N (1.5 Gg N) winter is larger than that in summer (Li et al., 2015b). over the BTH in August (Fébruary). **References:** 

Kondo, Y. and co-authors (2008) J. Geophys. Res., 113, doi: 10.1029/2008JD010134.

Li, S. and co-authors (2008) Science, **319**, 1657-1660.

The significant impacts of the additional HONO sources on Li, Y. and co-authors (2011) *Atmos. Environ.*, **45**, 4735-4744. concentrations and deposition of NO<sub>v</sub> suggest that the additional Li, Y. and co-authors (2015a) Tellus B, 67, 23930, http://dx.doi.org/10.3402/tellusb.v67.23930. HONO sources aggravate regional-scale acid deposition, emphasizing Li, Y. and co-authors (2015b) SOLA, 11, 36-42. the importance of the additional HONO sources in the NO, budget. Liu, Z. and co-authors (2010) Environ. Sci. Technol., 44, 7017-7022.

Figure 6: Simulated (a) precipitation amount and (b) wet deposition amount of nitrate in August 2007 from the reference run (Case R) and (c) percentage changes due to the additional HONO sources (Case E). Observations of the precipitation amount at seventeen meteorological stations over the BTH region are indicated by colored dots.

Wet deposition of  $NO_3^-$  (W-NO<sub>3</sub><sup>-</sup>) was found with ~20% increases in a few areas of the BTH in August (Fig. 6).

# VII. Impacts on the NO<sub>v</sub> budget

| Species          | Case R               | Case NO <sub>2</sub> *                    | Case Het                                  | Case Emis    | Case E                       |  |
|------------------|----------------------|-------------------------------------------|-------------------------------------------|--------------|------------------------------|--|
|                  |                      |                                           | August 2                                  | 2007         |                              |  |
|                  |                      | Dry deposition amount over the BTH region |                                           |              |                              |  |
| NO               | 0.49                 | (-11.0)                                   | (-53.2)                                   | (-3.4)       | 0.46 (-57.8)                 |  |
| $NO_2$           | 6.7                  | (1.3)                                     | (-29.0)                                   | (1.0)        | 5.7 (-30.6)                  |  |
| HONO             | 0.10                 | (61.3)                                    | (2653.9)                                  | (359.8)      | 1.4 (2762.3)                 |  |
| HNO <sub>3</sub> | 11.4                 | (5.9)                                     | (10.3)                                    | (3.4)        | 11.9 (15.3)                  |  |
| $NO_3^-$         | 1.4                  | (30.9)                                    | (40.1)                                    | (27.1)       | 1.6 (54.3)                   |  |
| PAN              | 0.08                 | (10.7)                                    | (36.3)                                    | (2.9)        | 0.09 (45.2)                  |  |
| Total            | 20.2                 | (4.7)                                     | (48.2)                                    | (13.1)       | 21.1 (54.3)                  |  |
|                  |                      | Wet deposit                               | ion amount o                              | over the BTH | region                       |  |
| HNO <sub>3</sub> | 0.07                 | (98.5)                                    | (190.5)                                   | (125.3)      | 0.07 (205.9)                 |  |
| $NO_3^-$         | 16.7                 | (319.8)                                   | (250.2)                                   | (182.9)      | 17.2 (161.8)                 |  |
| Total            | 16.8                 | (309.2)                                   | (244.2)                                   | (180.1)      | 17.3 (161.3)                 |  |
|                  |                      | Total em                                  | ussions over                              | the BTH regi | ion                          |  |
| NO               | 54.3                 | 54.3                                      | 54.3                                      | 54.0         | 54.0                         |  |
| HONO             | 0                    | 0                                         | 0                                         | 0.3          | 0.3                          |  |
|                  |                      |                                           | February                                  | 2007         |                              |  |
|                  |                      | Dry deposit                               | Dry deposition amount over the BTH region |              |                              |  |
| NO               | 0.08                 | (33.5)                                    | (-69.5)                                   | (25.5)       | 0.06 (-73.7)                 |  |
| $NO_2$           | 2.9                  | (-2.0)                                    | (-42.8)                                   | (-2.3)       | 2.3 (-46.0)                  |  |
| HONO             | 0.05                 | (36.5)                                    | (4549.7)                                  | (489.3)      | 1.3 (4766.5)                 |  |
| HNO <sub>3</sub> | 0.2                  | (6.4)                                     | (62.3)                                    | (5.6)        | 0.3 (73.8)                   |  |
| $NO_3^-$         | 0.7                  | (-13.5)                                   | (110.8)                                   | (-20.9)      | 0.9 (115.3)                  |  |
| PAN              | 0.08                 | (-16.1)                                   | (63.2)                                    | (-17.5)      | 0.1 (88.1)                   |  |
| Total            | 4.0                  | (3.6)                                     | (148.6)                                   | (14.9)       | 5.0 (166.0)                  |  |
|                  |                      | Wet deposit                               | ion amount o                              | over the BTH | region                       |  |
| HNO <sub>3</sub> | 1.0×10 <sup>-3</sup> | (109.8)                                   | (422.5)                                   | (124.1)      | 1.0×10 <sup>-3</sup> (493.1) |  |
| $NO_3^-$         | 3.6                  | (56.8)                                    | (165.8)                                   | (30.1)       | 4.1 (173.8)                  |  |
| Total            | 3.6                  | (56.8)                                    | (165.4)                                   | (30.1)       | 4.1 (173.7)                  |  |
|                  |                      | Total em                                  | ussions over                              | the BTH regi | ion                          |  |
| NO               | 54.3                 | 54.3                                      | 54.3                                      | 54.0         | 54.0                         |  |
| HONO             | 0                    | 0                                         | 0                                         | 0.3          | 0.3                          |  |

#### VIII. Conclusions

