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a) OH concentrations b) OH enhancements

I. Introduction IV. Impacts on concentrations of NOy species
Reactive nitrogen-containing compounds (NO,) are involved in many The updated WRF-Chem can generally well reproduce variations

VI. Impacts on NO; wet deposition

41°N a) Precipitation amount b) Wet deposition of NO3 c) Changes in wet deposition of NO3

important chemical processes in the atmosphere, including aerosol and and quantities of the individual NO, species, except for PAN. PAN 415N
ozone (O;) formation (Kondo et al., 2008). HONO, an important observations were underestimated by more than 80% in both Cases N
component of NO,, is a significant precursor of the hydroxyl radical (OH) R and E (Fig. 2f) due mainly to the underestimation of ’ 40°N
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