EGU General Assembly, Vienna, Austria, 13-17 April 2015

Changing the scale of hydrogeophysical aquifer heterogeneity characterization

Daniel Paradis^{1,2}, Laurie Tremblay¹, Paolo Ruggeri³, Patrick Brunet¹, Gabriel Fabien-Ouellet¹, Erwan Gloaguen¹, Klaus Holliger³, James Irving³, John Molson⁴ & René Lefebvre¹

- 1: Institut national de la recherche scientifique (INRS), Québec, Canada
- 2: RNCan, Geological Survey of Canada (GSC), Québec, Canada
- 3: Université de Lausanne (UNIL), Lausanne, Suisse
- 4: Université Laval, Québec, Canada

Objective

- Develop an integrated aquifer characterization approach at a few km² scale appropriate to understand and manage a contaminated site:
 - Has to define aquifer heterogeneity & inform on contaminant migration paths and fate
 - Has to produce data that can constrain conceptual and numerical aquifer models
- Develop a practical approach with proven field methods through the study of a real field site with an environmental issue (landfill leachate)

General Characterization Approach

- Characterize at a sub-regional scale covering source zones and receptors (5-20 km²)
- Acquire a broad range of data (geological, hydraulic, geophysical & geochemical)
- Emphasize high-resolution and continuous
 1D or 2D indirect geophysical data
- Use direct-push fully-screened wells to acquire high-resolution hydraulic data colocated with indirect geophysical data

From Broad to Detailed Methods

Approach analog to petroleum exploration

(See Bradford & Babcock, TLE, July 2013) **INDIRECT METHODS** Resolution (+) Regional surficial geology (depositional environment) **GPR & ERT surveys** DIRECT METHODS (structure & materials) Direct-push Multilevel slug tests (K_h) wells **CPT/SMR** soundings (S, T, D, R)Soil Samples Spatial Coverage **Permeameter** (K_{ν}) **Analyses** (*n*, grain size) After Paradis et al. (2014)

The St-Lambert 12 km² Study Area

Adapted Direct K Measurements

- Role: provide detailed K control
 - Establish relationships with indirect data
- Need: high-resolution and complete
 - Continuous horizontal and vertical $K(K_h \& K_v)$
- Methods: fully-screened direct-push wells
 - No filter pack to avoid short-circuits
 - Continuous & colocated K (w/ CPT/SMR, ERT)
 - Multi-level slug tests provide high-resolution K
 - Flowmeter K_h profiles to decrease testing time
 - New <u>vertical interference tests</u> to obtain K_v

Multi-level Slug Tests (K_h)

Flowmeter Profile while Pumping (K_n)

Qualitative Integration – Infer Conditions

GPR (structure), ERT (materials) & CPT/SMR (control)

Hydrofacies & K Prediction Data Set

Non-parametric Data Integration

RVM to predict HF & K from CPT/SMR

В

Hydrofacies (HF) (RVM classification)

Hydraulic conductivity (K) (RVM regression)

RVM: Relevant Vector Machine

Paradis et al. (2015)

2D Image - RVM Conversion of CPT/SMR

2D Geostatistical Data Integration

ERT & CPT/SMR: Conductivity and K estimates

Bayesian sequential simulation of K from BSS of resistivity

3D Geostatistical Data Integration

Three Colocated Sequential Gaussian Simulations (CSGS)

Flow and Transport Simulations

Deterministic Heterogeneous Model

Flow Paths

Groundwater Residence Time

Chloride Migration After 35 y

Tremblay (2013)

Constraints on the Numerical Model

Heads

³He/³H Age

Baseflow

Chloride

Tremblay (2013)

History matching & K heterogeneity

Perspective

- Data: integrated hydrogeophysical characterization with multiple measurements
 - Efficient "general-to-details" approach
 - Regional geophysical data & high-resolution colocated geophysical and direct K data
- Processing: need robust integration methods
- Verification / history matching: "hydraulically plausible" or "optimal" heterogeneity models from large sets provided by geostatistical realizations (hydraulic data & tracers)

Acknowlegements: grad studies

- Bélanger, C., 2011. M.Sc. thesis, INRS, Québec.
- Brunet, P., 2014. M.Sc. thesis, INRS, Québec.
- Fabien-Ouellet et al., 2014. SAGEEP 2014, Boston.
- Paradis et al., 2011. *Ground Water*, 49(4), 534-547.
- Paradis et al., 2012. Proceedings, 39th IAH Congress, Niagara Falls.
- Paradis & Lefebvre, 2013. *J. of Hydrology*, 478, 102-118.
- Paradis et al., 2014. Environmental Earth Sciences, 72(5), 1325-1348.
- Paradis et al., 2015. Water Resources Research, 51, 481-505.
- Paradis, D., 2014. Ph.D. thesis, INRS, Québec.
- Ruggeri et al., 2013. Geophysical J. Int., 194(1), 289-303.
- Ruggeri et al., 2014. *J. of Hydrology*, 514, 271-280.
- Ruggeri et al., 2013. The Leading Edge, July 2013, 766-774.
- Ruggeri, P., 2014. Ph.D. thesis, UNIL, Lausanne.
- Tremblay et al., 2014. *Hydrogeology J.,* 22(3), 587-608.
- Tremblay, L., 2013. Ph.D. thesis, INRS, Québec.

