

The seismotectonic significance of the 2008-2010 seismic swarm in the Brabant Massif (Belgium)

Koen VAN NOTEN, Thomas LECOCQ, Thierry CAMELBEECK Seismology-Gravimetry, Royal Observatory of Belgium, Brussels, Belgium

> Anjana K. SHAH U.S. Geological Survey, Denver, U.S.A.

ROYAL OBSERVATORY OF BELGIUM SEISMOLOGY - GRAVIMETRY

Figures in this presentation are published in Van Noten et al. 2015. Seismotectonic significance of the 2008-2010 Walloon Brabant seismic swarm in the Brabant Massif. Tectonophysics doi:10.1016/j.tecto.2015.05.026

The 2008-2010 Walloon Brabant Seismic Swarm

Temporary network deployed during the seismic swarm

Permanent stations

The 2008-2010 Walloon Brabant Seismic Swarm

Aim of this study

 (\mathbf{i})

(cc)

- Seismotectonic significance of the seismic swarm ?
- Link between local geology and the swarm?

Methodology

- Location improvement by cross-correlation
- Aeromagnetic filtering

- Waveform similarity of co-located events at local station OTT
- Improvement of P- & S-wave arrivals allow event location improvement

 $(\mathbf{\hat{I}})$

(cc)

Relocation by cross-correlation

After relocation:

 (\mathbf{i})

(cc)

- Improved epicentre and hypocentre distribution
- 1.5 km long, 5-7 km deep, NW-SE fault structure
- Absolute error of swarm location +/- 200m

Focal Mechanisms

- Of largest events only
- Consistent left-lateral strike-slip
- Regional stress tensor WNW-ESE

- Improved epicentre and hypocentre distribution
- 1.5 km long, 5-7 km deep, NW-SE fault structure
- Absolute error of swarm location +/- 200m

- Improved epicentre and hypocentre distribution
- 1.5 km long, 5-7 km deep, NW-SE fault structure
- Absolute error of swarm location +/- 200m

- Improved epicentre and hypocentre distribution
- 1.5 km long, 5-7 km deep, NW-SE fault structure
- Absolute error of swarm location +/- 200m

After relocation:

•

BY

(cc)

- Improved epicentre and hypocentre distribution
- 1.5 km long, 5-7 km deep, NW-SE fault structure
- Absolute error of swarm location +/- 200m

After relocation:

•

BY

(cc)

- Improved epicentre and hypocentre distribution
- 1.5 km long, 5-7 km deep, NW-SE fault structure
- Absolute error of swarm location +/- 200m

- Improved epicentre and hypocentre distribution
- 1.5 km long, 5-7 km deep, NW-SE fault structure
- Absolute error of swarm location +/- 200m

- Improved epicentre and hypocentre distribution
- 1.5 km long, 5-7 km deep, NW-SE fault structure
- Absolute error of swarm location +/- 200m

After relocation:

•

BY

(cc)

- Improved epicentre and hypocentre distribution
- 1.5 km long, 5-7 km deep, NW-SE fault structure
- Absolute error of swarm location +/- 200m

- Improved epicentre and hypocentre distribution
- 1.5 km long, 5-7 km deep, NW-SE fault structure
- Absolute error of swarm location +/- 200m

- Improved epicentre and hypocentre distribution
- 1.5 km long, 5-7 km deep, NW-SE fault structure
- Absolute error of swarm location +/- 200m

 (\mathbf{i})

CC

Waveform comparison of the 2008-2010 swarm and a M_{L} 4.0 event in epicenter area in 1953

Macroseismic Intensity

Seismotectonic significance of the swarm ?

 (\mathbf{i})

(cc)

Aeromagnetic analysis of epicenter area

- Total magnetic field RTP = influence of shallow + deep sources (deep + shallow)
- Aeromagnetic highs due to magnetized Lower Cambrian Tubize Formation
- Magnetic lows = slaty Lower Cambrian Mousty Formation

Total Field, reduced-to-pole assuming Earth's local magnetic field 1/1/1994 (I=65.8, D = -2)

Matched bandpass filtering: methodology

Matched bandpass filtering: methodology

Aeromagnetic bandpass filtering applied to epicentre area

in out- and subcrop

-160

Conclusions

Seismotectonic significance of the swarm ?

- 1. Magnetic filtering demonstrates that the fault is:
 - bordered by magnetic bodies with diff. orientations
 - bordered by rocks of different 'stiffness'
 - limited in size
 - = isolated structure in a shaly rock body
- 2. Limitation in size explains the restriction in seismicity
- 3. Orientation fits the NW-SE structural grain of the BM
- 4. This study shows the importance of inherited fault structures in an intraplate seismotectonic setting
- 5. Limited seismic hazard due to fault fragmentation

References

- *Van Noten et al. 2015.* Seismotectonic significance of the 2008-2010 Walloon Brabant seismic swarm in the Brabant Massif. *Tectonophysics*
- **Sintubin, M., 1999.** Arcuate fold and cleavage patterns in the southeastern part of the Anglo-Brabant fold Belt (Belgium): tectonic implications. *Tectonophysics* 309, 81-97.
- Debacker et al. 2004. The supposed thrust fault in the Dyle-Thyle outcrop area (southern Brabant Massif, Belgium) re-interpreted as a folded low-angle extensional detachment. Geologica Belgica 8, 53-69.

