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The 2008-2010 Walloon Brabant Seismic Swarm
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The 2008-2010 Walloon Brabant Seismic Swarm

• Seismotectonic significance of the seismic swarm ?
• Link between local geology and the swarm?

• Location improvement by cross-correlation
• Aeromagnetic filtering

Aim of this study Methodology
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Relocation by cross-correlation

• Waveform similarity of co-located events at local station OTT

• Improvement of P- & S-wave
arrivals allow event 
location improvement

HypoDD



After relocation: 
• Improved epicentre and hypocentre distribution
• 1.5 km long, 5-7 km deep, NW-SE fault structure
• Absolute error of swarm location +/- 200m

Relocation by cross-correlation

Focal Mechanisms
• Of largest events only
• Consistent left-lateral strike-slip
• Regional stress tensor WNW-ESE
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Improved hypocentre distribution
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Comparison of 1953 event with the 2008-2010 swarm

Waveform comparison of the 2008-2010 swarm 
and a ML 4.0 event in epicenter area in 1953

ML 4.0 - 1953 

ML 3.2 - 2008 
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Event magnitude

• Arcuate shape of the Brabant Massif (BM)

• Pronounced NW-SE lineaments

• Low background seismicity in the BM, yet, few large 
ML > 4.5 seismic events occurred in the BM

• 2008-2010 seismic swarm at southern border

Seismotectonic significance of the swarm ?

Steep tectonic slate belt
Sintubin et al. 2009
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Aeromagnetic analysis of epicenter area

• Total magnetic field RTP = influence of shallow + deep sources (deep + shallow)
• Aeromagnetic highs due to magnetized Lower Cambrian Tubize Formation
• Magnetic lows = slaty Lower Cambrian Mousty Formation

Total Field, reduced-to-pole 
assuming Earth’s local magnetic 

field 1/1/1994  (I=65.8, D = -2)
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Matched bandpass filtering: methodology

Separating short-wavelength that originate from shallow depths from 
long-wavelength anomalies that generally originate at greater depths.

Jef Phillips 1997 (USGS)

Amplitude spectrum

1. Amplitude spectra along a profile
2. Calculation of frequency-amplitude spectra
3. Finding “natural” breaks that correspond to equivalent depths
4. Calculation of anomaly map through the inverse transform

= carefully chosen bandpass filter

Seismic swarm

Filter 1 

Filter 1 Filter 2
P4       0.05 km          0.045 km
P3       0.20 km          0.19 km 
P2       0.55 km          0.47 km
P1       2.14 km          1.18 km    
P0       7.27 km          4.55 km 

SW NE
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Amplitude spectrum

1. Amplitude spectra along a profile
2. Calculation of frequency-amplitude spectra
3. Finding “natural” breaks that correspond to equivalent depths
4. Calculation of anomaly map through the inverse transform

= carefully chosen bandpass filter

Seismic swarm

Useful for seismology? Hell yeah!
Generate different aeromagnetic maps that 
represent sources near hypocenter depths. 

Filter 2

Filter 1 Filter 2
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P0       7.27 km          4.55 km 

SW NE



Aeromagnetic bandpass filtering applied to epicentre area

Total field – Reduced to the Pole
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Reduced to the Pole aeromagnetic filtered maps

By applying different filters, different “depth maps” can be made. 
The seismic swarm is limited in size and located in the poorly magnetic 
shaly Mousty Formation.



Conclusions
B

a
n

d
p

a
ss

filtered
Lo

w
-p

a
ss filtered

1. Magnetic filtering demonstrates that the fault is:
• bordered by magnetic bodies with diff. orientations
• bordered by rocks of different ‘stiffness’
• limited in size 

2. Limitation in size explains the restriction in seismicity

3. Orientation fits the NW-SE structural grain of the BM

4. This study shows the importance of inherited fault 
structures in an intraplate seismotectonic setting

5. Limited seismic hazard due to fault fragmentation

= isolated structure in a shaly rock body

Seismotectonic significance of the swarm ?
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