

Science & Technology

Inexpensive solid state radiation detector

Karen Aplin^{1,} Peter Hastings¹, Giles Harrison² and Keri Nicoll²

¹ Physics Department, University of Oxford, Keble Road, Oxford OX1 3RH UK ² Department of Meteorology, University of Reading, Earley Gate, Reading RG6 6BB UK

1. Abstract

Traditional technologies for environmental radioactivity measurement such as Geiger counters are relatively expensive and can be difficult to obtain (e.g. there was a worldwide shortage after the 2011 Fukushima incident). They also require a high voltage supply (100-1000V) and only provide a simple particle count rate.

Here we present a low cost (€100), miniaturised (5x5 cm) detector based on solid state technology. It runs at low voltage (from 9V), low current (a few tens of mA) and can interface with a mobile phone or computer via Bluetooth or USB. Unlike other types of solid state radiation detector, it does not need to be cooled. It is capable of simple discrimination between different radioactivity types and energies.

2. Operating principle

The radiation detector uses a $1 \text{cm}^2 \text{ PiN}$ type diode. Energetic particles ionise the depletion layer inside the detector and cause a pulse of current. The height of the pulse is usually proportional to energy.

Fig 1 The PiN diode as a radiation

Although the operating principle is simple, carefully designed electromagnetic screening and signal conditioning circuitry are needed to keep the device's cost and size down. This work has been partially motivated by the poor performance of other similar devices currently on the market.

detector (Tait, 1980) **3. Device description**

Fig 3 Prototype device

Fig 4 Testing with a

Fig 4 Testing with a radioactive source

4. Expected response

The radiation detector can, in principle, respond to all types of ionising radiation. In practice, some types of low-energy particle are excluded by the sensor enclosure or the noise threshold of the signal conditioning circuitry. The predicted response is shown in Table 1.

Type and origin of particle	Expected response	Detected?	Energy info?
Alphas, betas	Cannot penetrate sensor enclosure	×	×
Low-energy gammas (<100 keV) or X rays	Probably below detector noise floor	×	×
Energetic gammas (>100 keV)	Detected inefficiently via Compton scattering	~	~
Energetic particles, e.g. from cosmic rays or solar storms	Detected efficiently by ionisation if >1 MeV	V	~

Table 1 Expected response of PiN detector to different types of particle

In summary, the detector is expected to

- Count and give energy information for gamma radiation and high-energy ionising particles such as protons
- Count very high-energy ionising particles such as cosmic ray muons

5A. Testing – energy response

The detector was tested with three radioactive sources, each emitting characteristic gamma rays. To reduce the complication associated with ²²Na emitting two gammas of different energies (Table 2), the detector was placed under 12mm of lead, which removes about 45% of the 0.511MeV gammas (e.g. Knoll, 2010).

Radioactive source	Characteristic gamma energies (MeV)
Cobalt-60	1.17, 1.32
Sodium-22	0.511, 1.275
Caesium-137	0.661
Table 2 Gamma-ray e sources	emissions from radioactive

Fig 5 shows that the detector can resolve different gamma energies. The error in the ²²Na point is from the contribution of 0.511 MeV gammas. This contribution could be straightforwardly removed by using a different source or slightly modifying the experiment.

To compare the response to gamma rays versus cosmic rays, the detector was tested in a lead castle, Fig 6. The lead excludes all gamma radiation and only lets energetic cosmic ray particles reach the detector.

The lead castle makes little

The detector is relatively

there would be a bigger

difference between

outside the lead box)

insensitive to background

measurements inside and

Gammas are detected as a

tail of big pulses compared

particles", only depositing a

tiny fraction of their energy

to the muons which are

"minimum ionising

in the detector.

gamma radiation (otherwise

difference to the background count rate or pulse height

Fig 6 Testing in lead castle to exclude background gamma radiation

6. Conclusions

- Inexpensive (€100), small, low-power (<40 mA) PiN diode detector can respond to the full range of radioactivity levels from background natural radiation, up to much higher decay rates.
- Can resolve different gamma energies
- Data can be sent to a mobile phone or computer (via USB or Bluetooth) or written to an SD card. Powered via USB or battery.
 Potential users include
- Potential users include
 - Environmental scientists a wide range of applications
 - First responders e.g. fire brigades who want to check an area is radiation safe
 - School and educational
- Commercial and technical development is ongoing

Acknowledgements

Funded by the UK Science and Technology Facilities Council (Impact Accelerator Account). KAN is partially supported by the UK Natural Environment Research Council (Impact Accelerator Account).

References

Knoll G.E., (2010) Radiation Detection and Measurement, 4th edition, Wiley

Tait W.H., (1980) Radiation Detection, Butterworths

Fig 5 Median pulse heights against

0.511 MeV contribution from ²²Na ignored. Error bars are two standard

errors

source energy. An average 60Co energy of

1.25 MeV has been assumed, and the