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Abstract: The Internal gravity waves are widely recognized to contribute significantly to the energy and angular momentum transport. They play significant role in affecting many of the middle atmospheric phenomena (like QBO or Brewer-Dobson circulation). Using the GPS RO density profiles, we have discovered a localized area of enhanced IGW activity and breaking in the lower stratosphere of Eastern Asia/North-western Pacific region. Using a mechanistic model for the middle atmosphere, 3D
EP flux and residual circulation diagnostics, we investigate longitudinal variability of the Brewer-Dobson circulation and a hypothesis of its enhanced branch in this region. Further, we study possible formation and propagation directions of planetary waves caused by such a localized forcing and discuss the consequences for the stratosphere-troposphere exchange and polar vortex stability.
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